

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

Instituto de Ciencias Básicas e Ingeniería Centro de Investigaciones Químicas

Estudio Estructural de Dibenzometalocinas Conteniendo Elementos de los Grupos 14 y 15: Efectos Estructurales Ocasionados por una Interacción Intramolecular Transanular Donador—Aceptor

TESIS

PARA OBTENER EL GRADO DE DOCTOR EN QUÍMICA

Presenta:

M. en C. Simplicio González Montiel

Asesor: Dr. José Guadalupe Alvarado Rodríguez

Pachuca de Soto, Hgo.

Febrero 2007

La presente tesis se realizó bajo la dirección del Dr. **José Guadalupe Alvarado Rodríguez** en el laboratorio de Química Inorgánica del Centro de Investigaciones Químicas de la Universidad Autónoma del Estado de Hidalgo.

Esta tesis se realizó con el financiamiento de CONACyT 2004-2007 (Ref; 44009-Q), del proyecto: "Estudio de la expansión de la valencia de elementos pesados del grupo 14 contenidos en dibenzometalocinas".

Parte de esta tesis ha sido presentada en:

The XXXVIth International Conference on Coordination Chemistry (ICCC36); "Study of the S—»Sn transannular interaction in dibenzostannocines". Mérida, Yucatán, México 18 - 23 Julio, 2004.

El 2° Encuentro de Química Inorgánica, "Expansión del número de coordinación de Sn(IV) y Ge(IV) por una interacción intramolecular de oxígeno o azufre en un anillo de ocho miembros". Pachuca, Hidalgo, México 23 y 24 Junio, 2005.

Parte de este trabajo ha sido publicado en:

Simplicio González Montiel, Noemí Andrade López, José G. Alvarado Rodríguez, *Eur. J. Inorg. Chem.*, 2006, 3762-3768.

Simplicio González Montiel, Noemí Andrade López, Verónica García Montalvo, Juan Antonio Cogordan, José G. Alvarado Rodríguez, *Eur. J. Inorg. Chem.*, 2006, 4752-4760.

Agradecimientos a CONACyT por las becas otorgadas para la realización de mis estudios del Doctorado en Química.

Beca otorgada por el proyecto CONACyT 2000-2004 (Ref; J35085-E), del proyecto "Estudio de la coordinación de derivados dipiridinícos con metales representativos de los grupos 1 y 2", con ID 3140.

Beca otorgada por el CONACyT del padrón de excelencia, con número de registro 193453.

Beca otorgada por el proyecto CONACyT 2004-2007 (Ref; 44009-Q), del proyecto: "Estudio de la expansión de la valencia de elementos pesados del grupo 14 contenidos en dibenzometalocinas", con ID 3140.

Agradecimientos especiales.

Al Dr. Juan Antonio Cogordan del Instituto de Química de la UNAM, por la realización del estudio teórico de la presente tesis.

A la Dra. Verónica García Montalvo del Instituto de Química de la UNAM, por su apoyo con reactivos y equipo.

DEDICATORIAS

A mi madre la señora Luisa Montiel Hernández por darme la vida y

todo su apoyo.

A mi padre el señor Manuel González González por su apoyo.

A mis hermanos **José Manuel, Lucio, Marcelo y Simón** por todo su apoyo.

A **Lupita** quien es el amor de mi vida, y es quien me ha acompañado en los momentos buenos y malos que me han sucedido.

A la Dra. Noemí Andrade López por todos sus consejos y platicas.

Al Dr. José Guadalupe Alvarado Rodríguez por darme la oportunidad de trabajar en su grupo de investigación.

A **Luis** y **Gil** por que han demostrado ser buenos amigos en las buenas y en las malas.

A los **compañeros** del laboratorio de química Inorgánica y del Centro de Investigaciones Químicas.

Agradecimientos

A mis **padres** por ser las personas que me dieron vida y son parte fundamental en mí existir.

A mis **hermanos, cuñadas y sobrinos** quienes juntos hemos pasado grandes momentos de alegría y felicidad.

A **Lupita** por ser mi novia y una gran compañera en todos los momentos que hemos pasado juntos.

A mi asesor el Dr. José Guadalupe Alvarado Rodríguez. A la Dra. Noemí

Andrade López por todo su apoyo.

Al Dr. Antonio Rafael Tapia Benavides y a la Dra. Ángela Margarita Tlauextl Romero.

A los encargados de los equipos de IR, Raman, Análisis Elemental y espectrómetro de Masas.

A todos gracias.

Índice General	
Pág.	
Lista de abreviaturas	i
Resumen	iii
Abstractv	
Capítulo 1	
Antecedentes Generales	1
1 Antecedentes	3
1.1 Compuestos hipervalentes	3
1.2 Métodos para determinar el grado de desplazamiento entre dos geometrías ideales	7
1.2.1Método de transición de geometría tetraédrica a bipirámide trigonal mediante	
el uso de seis ángulos	7
1.2.2Método de correlación de estructura	9
1.2.3Método de transición de geometría piramidal a y-bipirámide trigonal	
mediante el uso de ángulos	9
1.2.4Correlación lineal	9
1.3 Orden de enlace	10
1.4 Sistemas que pueden presentar una interacción intramolecular D	11
1.4.1 Nomenclatura	11
1.5 Metalocanos	12
1.5.1Hypervalencia en germocanos	13
1.5.1.1 Interacción intramolecular N → Ge	14
1.5.1.2 Interacción intramolecular D \longrightarrow Ge (D = O, S)	15
1.5.2Hypervalencia en estanocanos	18
1.5.2.1 Interacción intramolecular N → Sn	18
1.5.2.2 Interacción intramolecular D \rightarrow Sn (D = O, S)	19
153 Hypervalencia en plumbocanos	23
1 5 4 Hypervalencia en arsocanos	25
1 6Compuestos del tipo IV	28
161 Dibenzodioxatiafosfocinas	29
1 6 2 Dibenzodioxatiasilocinas	32
1.6.3 Dibenzoelementodioxagermocinas	33
1.6.4 Dibenzoelementoditioestibocinas	35
1.6.5 Dibenzotritiametalocinas ($A =$ metales de transición)	37
Objetivos	39
Bibliografía	40
Capítulo 2	
Estudio estructural de dibenzogermocinas	43
2.1 Antecedentes.	46
2.2 Resultados y discusión	47
2.2.1 Síntesis de los compuestos 1-5	47
2.2.2 Espectrometría de masas de 1-5	49
2.2.3 Espectroscopia de Resonancia Magnética Nuclear	51
2.2.3.1 Resonancia Magnética Nuclear de ¹ H de los compleios 1-5	51
2.2.3.2 Resonancia Magnética Nuclear de ¹³ C de los complejos 1-5	54
2.2.4 Estudios de difracción de rayos X de monocristal de los complejos 1-5	57
2.2.41 Estructura cristalina de los compuestos 1-5	58

2.2.4.2 Estimature melecular de los compuestos 1.5	60
2.2.4.2 Estructura molecular de los compuestos 1-5	66
2.2.5 Estudio teoricos de estructura electronica	00
2.2.5.1 Analisis de NBO	68 71
2.2.5.2 Discusion del analisis teorico en funcion de NBO	/1
2.3 Conclusiones	73
2.4 Parte Experimental	74
2.4.1 Preparación de las dibenzogermocinas 1-5	74
2.4.2 Cristalografía de rayos X de $S(C_6H_4S)_2GePhCl-(l)$, $S(C_6H_4S)_2GePhBr-(2)$.	
$S(C_6H_4S)_2GePh_2$ (3) y O(C ₆ H ₄ S) ₂ GeEtCl (4) y O(C ₆ H ₄ S) ₂ GePh ₂ (5)	76
2.4.3 Detalles computacionales	76
Bibliografía	77
Capítulo 3	
Estudio estructural de dibenzotritiaestanocinas	79
3.1 Antecedentes	82
3.2 Resultados y discusión.	83
3.2.1 Síntesis de los compuestos 6-11	83
3.2.2 Espectrometría de masas de los complejos 6-10	84
3.2.3 Espectroscopia de Resonancia Magnética Nuclear	85
3.2.3.1 Resonancia Magnética Nuclear de ¹ H de los complejos 6-11	85
3.2.3.2 Resonancia Magnética Nuclear de ¹³ C de los complejos 6-11	88
3.2.3.3 Resonancia Magnética Nuclear de ¹¹⁹ Sn de los complejos 6-11	90
3.2.4 Estudios de difracción de rayos X de monocristal de los complejos 6-11	92
3.2.4.1 Estructura molecular de los compuestos 6-11	93
3.2.4.2 Estructura cristalina de los compuestos 6-11	104
3.2.5 Estudio teóricos de estructura electrónica	108
3.2.5.1 Análisis de NBO	112
3.2.5.2 Discusión del análisis teórico en función de NBO	113
3.3 Conclusiones	114
3.4 Parte experimental	115
3.4.1 Prenaración de los dibenzotritiaestanocinas 6-11	115
3.4.2 Cristalografia de rayos X de S(C(H,S) ₂ SnPhCl ₋ (6) S(C(H,S) ₂ SnPhBr(7)	110
$S(C_2H_2S)_2SnPhL(8) = S(C_2H_2S)_2SnPh_2 = (9) = S(C_2H_2S)_2SnCl_2(10) + v$	
$S(C_{14}S)_{2}Sin m^{-}(0), S(C_{14}S)_{2}Sin m^{2}(7), S(C_{14}S)_{2}Sin C_{2}(10)$	117
$S(C_6(145)_2)S(1(1), (11))$	117
Bibliografia	110
Capítulo A	119
Capitulo 4 Estudio estructural en dibenzonlumbocinas	121
A 1 Antegedentes	121
4.1 Antecedentes	124
4.2 Resultations y discussion $4.2.1$. Solutions in the neuropean stars $12 \approx 12$	123
4.2.1 Sintesis de los compuestos 12 y 13	125
4.2.2 Espectroscopia de Resonancia Magnetica Nuclear	125
4.2.2.1 Resonancia Magnética Nuclear de H de los complejos 12 y 13	125
4.2.2.2 Resonancia Magnética Nuclear de ¹³ C de los complejos 12 y 13	128
4.2.3 Estudios de difracción de rayos X de monocristal de los complejos 12 y 13	134
4.2.3.1 Estructura molecular de los compuestos 12 y 13	135
4.2.3.2 Estructura cristalina de los compuestos 12 y 13	138
4.3 Conclusiones	143

4.4 Parte Experimental	144
4.4.1 Preparación de las dibenzoplumbocinas 12 y 13	144
4.4.2 Cristalografía de rayos X de $S(C_6H_4S)$ 2PbPh ₂ -(12) y O(C ₆ H ₄ S)2PbPh2 (13)	145
Bibliografía	146
Capítulo 5	
Estudio estructural en dibenzotritiarsocinas	147
5.1 Antecedentes	150
5.2 Resultados y discusión	151
5.2.1 Síntesis de los compuestos 14-16	151
5.2.2 Espectrometría de masas de 14-16	152
5.2.3 Espectroscopia vibracional	152
5.2.4 Espectroscopia de Resonancia Magnética Nuclear	155
5.2.4.1 Resonancia Magnética Nuclear de 'H de los complejos 14-16	155
5.2.4.2 Resonancia Magnética Nuclear de ¹³ C de los complejos 14-16	157
5.2.5 Estudios de difracción de rayos X de monocristal de las dibenzotritiarsocinas	
14-16	160
5.2.5.1 Estructura molecular de las dibenzotritiarsocinas 14-16	161
5.2.5.2 Estructura cristalina de los compuestos 14-16	165
5.3 Conclusiones	167
5.4 Parte Experimental	168
5.4.1 Preparación de las dibenzotritiarsocinas 14-16	168
5.4.2 Cristalografía de rayos X de S(C ₆ H ₄ S) ₂ AsCl (14), S(C ₆ H ₄ S) ₂ AsBr (15) y	
$S(C_6H_4S)_2AsI(16)$	169
Bibliografia	170
Capitulo 6	
Conclusiones Generales	171
Anexos	175

Lista de abreviaturas

Å	Ángstrom (10^{-10} m)
δ	desplazamiento químico
ψ - BPT	geometría bipirámide trigonal con una posición ecuatorial vacante
0	grados
APT	siglas en inglés; Attached Protón Test
asim	asimétrica
В	bote
B3LYP	siglas en inglés; Becke three parameter Lee-Yang-Parr functional
B-B	bote-bote
BPT	geometría bipirámide trigonal
B-S	bote-silla
BT	bote torcido
c	señal cuádruple
CDCI ₃	cloroformo deuterado
Cis	cisteína
COLOC	siglas en inglés; Correlated spectroscopy for long range coupling
COSY	siglas en inglés; Correlation Spectroscopy
d	señal doble
dd	señal doble de doble
ddd	señal doble de doble
DFT	siglas en inglés; Density Functional Theory
DOF	dioxafosfepina
EM-FAB+	Espectrometría de Masas por bombardeo atómico de átomo pesado
EM-IE	Espectrometría de Masas por Impacto Electrónico
Et	etilo
HETCOR	siglas en inglés; Heteronuclear Chemical Shift Correlation
Hz	Hertz
Bu	iso-butilo
int	intensidad
[•] PrOH	iso-propanol
IR	infrarrojo
J	constante de acoplamiento
m ▶ c● ⁺	señal múltiple
M	ion molecular
m/z	relación masa carga
Me	metilo
MHz	megahertz
mmol	milimol
MRPECV	Modelo de Repulsión de los Pares de Electrones de la Capa de Valencia
mW	miliwatts
NBO NBO	siglas en inglés; Natural Bond Orbital
"Bu	n-butilo
" BuLi	n-butilitio
0e	orden de enlace

O _h	geometría octaédrica
ORTEP	siglas en inglés; Oak Ridge Thermal Ellipsoid Plot
Р	geometría piramidal
P.f.	punto de fusión
PC	geometría pirámide de base cuadrada
Ph	fenilo
PM3	Método Paramétrico 3
ppm	partes por millón
q	señal quíntuple
r _{cov}	radio covalente
RECP	siglas en inglés; Relativistic Effective Core Potencial
RMN ¹¹⁹ Sn	Resonancia magnética nuclear de estaño
$RMN^{13}C{^{1}H}$	Resonancia magnética nuclear de carbono desacoplado de protón
RMN ¹ H	Resonancia magnética nuclear de protón
RMS	siglas en inglés; Root Mean Square Deviation
r _v dw	radio van der Waals
S	señal sencilla
sim	simétrica
S-S	silla-silla
t	señal triple
Т	torcida
^T ⁻ Bu	tere-butilo
T _d	geometría tetraédrica
TMS	tetrametilsilano
Δ	incremento
ν	vibración

Resumen

En la presente tesis se investigaron algunos factores que influyen en la hipervalencia de elementos pesados del bloque p que actúan como átomos aceptores A [A = Ge (IV), Sn(IV), Pb(IV), As(III)] a través de la formación de una interacción intramolecular transanular con un átomo donador D (D = S, O) en dibenzometalocinas (Figura 1).

Para poder llevar a cabo esta investigación se sintetizaron 16 dibenzometalocinas (Figura 2); fueron caracterizadas por análisis elemental, espectroscopia vibracional, espectrometría de masas, resonancia magnética nuclear de ¹H, ¹³C y ¹¹⁹Sn, y mediante experimentos de difracción de rayos X de monocristal.

Figura 2. Dibenzometalocinas de los grupos 14 y 15.

El análisis estructural de las dibenzometalocinas 1-16 indica la existencia de una interacción intramolecular transanular $D \rightarrow A$ de magnitud variable que presenta como característica principal una distancia mayor a la suma de los radios covalentes pero menor a la suma de los radios de van der Waals de los átomos involucrados en la interacción. Estas interacciones son descritas como enlaces secundarios.

Tomando en consideración la interacción intramolecular transanular $D \rightarrow A$ se observó que en las dibenzometalocinas cambia el número de coordinación del átomo aceptor de cuatro a cinco en el caso de los elementos del grupo 14 y de tres a cuatro para el grupo 15.

La fuerza de la interacción intramolecular transanular $D \rightarrow A$ presente en la dibenzometalocinas disminuye cuando los átomos de halógeno son parcialmente o totalmente reemplazados por grupos etilo o fenilo.

La conformación adoptada por los anillo de ocho miembros presentes en la serie de dibenzometalocinas del grupo 14 es descrita como bote torcido, con simetría puntual C_l , para las dibenzotritiarsocinas descrita como bote-bote con simetría puntual C_s .

Abstract

In this doctoral thesis, several factors have been investigated that influence on the hypervalence of heavy *p*-block elements acting as acceptor atom A [A = Ge(IV), **Sn(IV)**, Pb(IV), As(III)] by means of an intramolecular transannular interaction with a donor atom $D \rightarrow A$ (D = S, O) in dibenzometallocines (Figure 1).

Figure 1. Dibenzometallocines.

For this investigation were prepared 16 dibenzometallocines (Figure 2). All compounds were characterized by elemental analysis, vibrational spectroscopy, mass spectrometry, ¹H, ¹³C and ¹¹⁹Sn nuclear magnetic resonance and by X-ray diffraction experiments of single crystal.

	Y	Ge		5	it si	-S	S-P	b <s< th=""><th>S-</th><th>s As-S</th></s<>	S-	s As-S
1 2 3 4 5	D S S S O O	L ¹ Cl Br Ph Cl Ph	L ² Ph Ph Ph Et Ph	6 7 8 9 10	L ¹ Cl Br I Ph Cl	L ² Ph Ph Ph Ph Cl	12 13	D S O	14 15 16	Hal Cl Br I
Diben	izog	germ	ocines	Dib	Ph enzo	S ₂ CNEt ₂ stannocines	Dibenzoplu	umbocines	Dibenzo	arsocines

Figure 2. Dibenzometallocines of the groups 14 and 15.

The structural analysis of the dibenzometallocines 1-16 indicates the existence of an intramolecular transannular interaction $D \rightarrow A$ with variable magnitude, displaying as main feature a distance longer than the covalent radii sum but shorter than the van der Waals radii sum of the atoms. These interactions can be described as secondary bonds.

Taking into account the transannular interaction $D \rightarrow A$ have been observed that in the dibenzometallocines the coordination number changes from four to five in the case of the 14 group elements and three to four in the 15 group.

The strength of the intramolecular transannular interaction $D \rightarrow A$ in the dibenzometallocines decreases when the halogen atoms are partially or fully replaced by ethyl or phenyl groups.

The conformation adopted by the eight-membered ring present in the series of dibenzometallocines is described as twist-boat with C_s symmetry, meanwhile for the dibenzotritiarsocinas is described as boat-boat with C_s symmetry.

Capítulo 1 Antecedentes Generales

1 Antecedentes.

El propósito del presente capítulo es dar a conocer los antecedentes de los estudios realizados en moléculas que en su estructura contienen en posiciones adecuadas a un átomo aceptor A con carácter ácido de los grupos 14 o 15 y a un átomo donador D con carácter básico. En estos sistemas moleculares el átomo A tiene unido de forma exocíclica un ligante L que lleva a la formación de un sistema tripartita $D \rightarrow A$ -L. El principal enfoque en estos sistemas es el estudio y análisis de la existencia de interacciones intramoleculares $D \rightarrow A$ y el efecto que tienen sobre éstas a) la naturaleza del átomo aceptor A. b) la naturaleza del átomo donador D y c) la naturaleza del ligante o ligantes L. En este tenor y considerando la existencia de este tipo de interacciones se puede dar lugar al aumento del número de coordinación del átomo aceptor A lo cual genera a su vez cambios importantes en su geometría local que pueden ser descritos a través de la estimación de la distorsión entre dos geometrías ideales.

Para poder discutir ampliamente los aspectos estructurales es necesario revisar previamente algunos conceptos importantes como son los siguientes.

1.1 Compuestos hipervalentes.

La valencia normal de los elementos del grupo 14 es de cuatro mientras que la de los del grupo 15 es de tres, con lo cual se alcanza un total de ocho electrones en la capa de valencia. Cuando se rebasa este conteo formal de electrones se obtienen compuestos denominados hipervalentes.

El concepto de compuestos hipervalentes fue propuesto en 1969 por Musher¹ para compuestos de elementos de los grupos 15-18 que poseen más de ocho electrones en su capa de valencia. Más tarde, Akiba^{2,3} propuso que compuestos hipervalentes son aquellos con elementos del grupo principal (elementos de los grupos 1, 2, 13-18) que contienen un número N de electrones mayor a ocho formalmente asignables en su capa de valencia y directamente asociados con un átomo central (A) el cual está directamente enlazado con un número L de ligantes. Para describir a estos compuestos hipervalentes Akiba² ha empleado la designación N-A-L; un ejemplo de ella es su empleo para describir a los arreglos de bipirámide trigonal (BPT) o pirámide de base cuadrada (PC) así como uno octaédrico en torno a un centro aceptor A (Figura 1.1).

Hay principalmente dos formas para explicar que existe un número de electrones mayor a ocho dentro de la capa de valencia de un elemento del grupo principal en un compuesto hipervalente:

- a) Mediante la construcción de orbitales híbridos adecuados sp^3d (BPT) o sp^3d^2 (Oh) empleando orbitales ns, np y (n+l)d,
- b) Mediante la construcción de orbitales con alto carácter iónico.

En lo que respecta al punto a) la gran diferencia energética entre los orbitales n(sp) y los (n+1)d de los elementos del bloque p es la responsable de la poca participación de los orbitales d difusos en el enlace, haciendo que haya un número insuficiente de orbitales para albergar a más de ocho electrones.^{2,3}

Por otra parte, para el caso b) se ha propuesto el modelo de enlace lineal de tres centros - cuatro electrones $(3c-4e)^4$ para elementos deficientes en orbitales. En este enlace lineal, los electrones están distribuidos en los ligantes L más que en el átomo central A y el número total de electrones en la capa de valencia del átomo central A es menor a ocho, es decir, no se excede el llamado octeto de Lewis.

Este criterio para poder explicar la hipervalencia de los elementos del bloque p sin considerar a los orbitales atómicos d en la formación del enlace tricéntrico se basa en la teoría de orbitales moleculares para elementos con más de ocho electrones en su capa de valencia; este tipo de enlace ha sido llamado enlace hipervalente.¹⁻⁴

En moléculas con geometría de bipirámide trigonal se considera que el átomo A puede usar sus orbitales nsp^2 para formar enlaces de dos centros - dos electrones (2c-2e) con los ligantes en posición ecuatorial mientras que el enlace axial puede ser explicado a través de un enlace hipervalente de 3c-4e (Figura 1.2).

Figura 1.2. Diagrama de orbitales moleculares del enlace axial de PF₅.

La molécula de PF_5 está compuesta de tres enlaces ecuatoriales 2c-2e con un total de seis electrones en el plano y de dos axiales (enlaces 3c-4e) con un total de cuatro electrones. Del diagrama se observa que el HOMO es un orbital molecular de no enlace. Este modelo permite explicar por qué las distancias axiales son mayores que las ecuatoriales en el PF5 y la carga negativa está fuertemente localizada en los ligantes fluoro axiales (en el HOMO), haciendo que este enlace esté más polarizado que los correspondientes ecuatoriales.

En el caso de moléculas neutras del grupo 14 (o del grupo 15) el enlace tricéntrico suele ser explicado por la coordinación de un par electrónico libre de un ligante donador D (intra- o intermolecular) hacia un orbital sigma de antienlace (a*) de un enlace A-L, formándose así un sistema tricéntrico D \rightarrow A-L (Figura 1.3).

Figura 1.3. Sistema tricéntrico D→A-L.

Para que pueda existir la formación de un enlace hipervalente han sido sugeridas las siguientes condiciones:^{2,3}

1.- Este tipo de enlace puede ser formado cuando los ligantes donadores son más electronegativos que el átomo aceptor A.

2.- Los sustituyentes más electronegativos que participen en un enlace hipervalente tienden a ocupar las posiciones axiales en una bipirámide trigonal, es decir, ocupan posiciones diametralmente opuestas.

3.- Las longitudes de los enlaces A-L en compuestos penta- y hexacoordinados son más largas que las que se presentan en moléculas tetraédricas similares.

La condición 3 deja abierta una pregunta que puede ser formulada de la siguiente manera: ¿Hasta qué punto pueden ser más largas las distancias axiales en el sistema tricéntrico D \rightarrow A-L respecto a las ecuatoriales?

Para contestar a esta pregunta, es conveniente revisar el concepto de enlace secundario, un tipo de enlace real que acompaña a los enlaces ideales. En compuestos en el estado sólido que presentan moléculas cercanas entre sí, Alcock ha descrito a interacciones intermoleculares del tipo $D \rightarrow A-L$ como enlaces secundarios. Estos enlaces secundarios presentan como característica principal que la distancia de enlace $D \rightarrow A$ es mayor a la suma de los radios covalentes pero menor a la suma de los radios de van der Waals de los átomos A y D involucrados (Tabla 1.1). Para la explicación de este tipo de enlace $Alcock^5$ al igual que Musher¹ se basa en la teoría de orbitales moleculares y acepta el criterio de enlace multicéntrico de 3c-4e. Alcock propone una serie de reglas que gobiernan la geometría de un enlace secundario:

1.- La geometría de los enlaces primarios de una molécula está determinada por la aplicación del modelo de repulsión de los pares de electrones de la capa de valencia (MRPECV).

2.- El enlace secundario puede formarse en posición lineal con el enlace primario.

3.- El enlace secundario no se puede formar en la misma dirección que se encuentra el par libre del átomo aceptor cuando éste tiene pares de electrones libres.

Con base en el arreglo lineal del sistema $D \rightarrow A-L$, para poder determinar la presencia de un enlace secundario han sido propuestas algunas restricciones estructurales de acuerdo con la figura 1.4.

Figura 1.4. Arreglo lineal en un sistema $D \rightarrow A-L$

En el arreglo D \rightarrow A-L, bl debe ser un enlace covalente, b2 puede ser cualquier tipo de contacto (enlace, no enlace, inter- o intramolecular) cuya longitud es menor a la suma de los radios de van der Waals de los átomos D y A y θ debe ser igual o cercano a 180°.

 Tabla 1.1. Radios covalentes (r_{cov}) y de van der Waals (r_{vdW}) para algunos átomos donadores y

 átomos potencialmente aceptores de los grupos 14 y 15.

	r _{cov}	r_{vdW}		r_{cov}	r_{vdW}		r _{cov}	r_{vdW}		$r_{\nu dW}$	$\Sigma r_{\rm cov}$
С	0.77	1.70	Ν	0.75	1.55	0	0.73	1.52	F	0.72	1.47
Si	1.17	2.10	Р	1.06	1.80	S	1.02	1.80	Cl	0.99	1.75
Ge	1.22	1.95	As	1.20	1.85	Se	1.16	1.90	Br	1.14	1.85
Sn	1.41	2.17	Sb	1.40	2.02	Те	1.36	2.06	Ι	1.33	1.96
Pb	1.47	2.02	Bi	1.46	2.15						

Una molécula hipervalente debe su existencia a que en su estructura presenta en posiciones adecuadas átomos con características electrónicas aceptoras A y átomos donadores D dando como resultado la existencia de un enlace hipervalente ($D \rightarrow A$) según Musher¹ o un enlace secundario de acuerdo con Alcock, y esto puede ser explicado como un enlace de 3c-4e. Vale la pena mencionar que dos términos han sido usados para describir un mismo fenómeno: hipervalencia^{1,2,9-11} e hipercoordinación.¹³

El término hipervalencia se emplea en compuestos que rebasan formalmente el octeto y la valencia normal del átomo pero que el estado de oxidación no cambia (como en el caso de PCI3 respecto a PCI5) y tiene tanto partidarios como opositores. Los partidarios argumentan que el concepto de hipercoordinación es vago y ambiguo y no incluye la idea de enlaces dirigidos, a diferencia del enlace hipervalente tricéntrico (3c-4e) que es lineal. Los opositores proponen que el estado de oxidación del átomo central no cambia sino que sólo lo hace su esfera de coordinación, es decir, existe un aumento en su número de coordinación, por lo que el término a usar debería ser hipercoordinación. También se ha criticado que el enlace hipervalente o secundario no es un enlace formal sino una interacción débil entre un átomo donador y un átomo aceptor lo que permite aumentar el número de coordinación, el término que describiría mejor este hecho en este tipo de compuestos es hipercoordinación.¹³

En los compuestos hipervalentes o hipercoordinados siempre hay un número mayor de átomos

donadores alrededor del centro aceptor A respecto al que establecen las reglas normales de valencia. Así, el aumento del número de coordinación de un átomo aceptor implica primeramente cambios en su número de coordinación y en consecuencia cambios en su geometría local. Estos cambios pueden en principio ser cuantificados; a continuación se describen algunos métodos para determinar el grado de desplazamiento de una geometría ideal, con el número de coordinación más bajo a una geometría ideal con el número de coordinación más alto.

1.2 Métodos para determinar el grado de desplazamiento entre dos geometrías ideales.

Los compuestos con elementos tetravalentes del grupo 14 en estado de oxidación (IV), cuando aumentan su número de coordinación de cuatro a cinco por una interacción con un donador D, experimentan se obtiene un arreglo geométrico que puede ser considerado intermedio dentro de una trayectoria de desplazamiento entre una geometría tetraédrica (T_d) y una bipirámide trigonal (BPT). Para el caso de los elementos del grupo 15 en su estado de oxidación (III) aumenta el número de coordinación de tres a cuatro, con un desplazamiento en la geometría piramidal (P) a bipirámide trigonal con una posición ecuatorial vacante (ψ -BPT).

Para poder medir el grado de desplazamiento de una geometría ideal a otra han sido propuestos diferentes métodos, a continuación se menciona algunos de ellos:

1.2.1 Método de desplazamiento de geometría tetraédrica a bipirámide trigonal mediante el uso de seis ángulos.

Un método desarrollado por Draeger *et al*¹⁴⁻¹⁶ para determinar el grado de desplazamiento de una geometría ideal tetraédrica (T_d) a bipirámide trigonal (BPT) se basa en el uso de los seis ángulos de un tetraedro (Figura 1.5). Este método considera que la suma de los tres ángulos L2AL3, L₃AL₄ y L₄AL₂ en la geometría T_d que van a experimentar una apertura es igual a 328.5° y aumentaría su valor a 360.0° en la geometría BPT ($\Sigma \theta_{eq}$). Por otra parte, la suma de los tres ángulos L₁AL₂, L₁AL₃ y L₁AL₄ en la geometría T_d que van a experimentar una disminución es de 328.5° y disminuiría su valor a 270.0° en la geometría BPT ($\Sigma \theta_{ax}$) El valor de la diferencia entre esas sumas es igual a 0° para un tetraedro y 90° para una BPT; de esto se propone que cuando la diferencia es cercana o igual a 0° la geometría predominantemente tetraédrica y cuando la diferencia es cercana o igual a 90° la geometría predominante es BPT. Lo anterior se puede calcular de acuerdo a la siguiente ecuación:

Si $\Delta \theta = 0^{\circ}$ la geometría es T_d; si $\Delta \theta = 90^{\circ}$ la geometría es BPT. Figura 1.5. Desplazamiento de geometría tetraédrica a BPT.

1.2.2 Método de correlación de estructura.

Draeger *et al* ¹⁴⁻¹⁶ propusieron un método que se basa en el método de correlación estructural propuesto primeramente por Burgi¹⁷ y Dunitz¹⁸ para poder determinar el grado de desplazamiento de una geometría tetraédrica a BPT a través de la medida de la distancia del átomo central (Đ) con respecto al plano formado por las tres posiciones ecuatoriales (Figura 1.6). Con base en ciertas consideraciones, para un tetraedro la distancia encontrada entre el átomo aceptor A y el plano formado por los ligantes ecuatoriales es de 0.71 Å mientras que para una BPT es de 0.00 Å.

La estimación del valor de *D* en un tetraedro ideal, puede ser calculada de acuerdo a la siguiente deducción:

Sea a la distancia entre dos ligantes.

Sea b la distancia entre el centro del triángulo y un ligante.

Sea \mathbf{r} la distancia entre un ligante (L_i) y A .

Sea \boldsymbol{D} la distancia entre el plano formado por tres ligantes y A.

Considerando lo anterior

Sen $\omega = (r+D)/a$ Cos $\delta = a/2r$ despejando $a = 2r \cos \delta$ Sen $\omega = (r+D)/2r \cos \delta$ $r+D = 2r \cos \delta$ Sen ω $D = 2r \cos \delta$ Sen ω -r $D = r(2\cos \delta$ Sen ω -1) D = 1/3 r

El valor de D en un complejo homoléptico tetraédrico depende directamente del valor de la distancia comprendida entre A y un ligante Lⁱ.

1.2.3 Método de transición de geometría piramidal a ψ -bipirámide trigonal mediante el uso de ángulos.

El método desarrollado por Draeger *et al*¹⁴⁻¹⁶ para determinar el grado de desplazamiento de una geometría ideal de piramidal (P) a ψ -BPT se basa en el cambio del ángulo ($\Delta\theta$) encontrado por la diferencia del ángulo en la posición ecuatorial (θ_{eq}) de la ψ -BPT (menor a 120°) menos la semisuma de los dos ángulos en posición axial [($\Sigma\theta_{ax}$)/2] (igual a 90° para una BPT). De lo anterior se deducen que si el $\Delta\theta > = 0^{\circ}$, la geometría adoptada por el átomo aceptor es piramidal mientras que si $\Delta\theta = 30^{\circ}$ la geometría adoptada es de una ψ -BPT (Figura 1.7):

1.2.4 Correlación lineal.

Este método para determinar el grado de desplazamiento de una geometría local ideal fue propuesto por Holmes *et* $a/,^{19-21}$. En este método se considera la distancia de la interacción intramolecular D \rightarrow A para poder determinar el grado de desplazamiento de una geometría local tetraédrica a BPT y de piramidal a ψ -BPT para compuestos en donde el átomo aceptor es un elemento del grupo 14 ó 15, respectivamente. El grado de desplazamiento de la geometría tetraédrica a BPT y de piramidal a ψ -BPT se determina por interpolación lineal entre la suma de los radios de van der Waals y la correspondiente a los radios covalentes de los átomos donador y aceptor. Esto es ilustrado en la figura 1.8.

Del análisis de la gráfica se deduce lo siguiente:

- a) si la distancia D—>A se acerca más a la suma de los radios covalentes de los átomos involucrados, el número de coordinación aumenta de cuatro a cinco llevando a un porcentaje de carácter de distorsión cercano a una geometría BPT o de tres a cuatro aproximándose a una geometría ¡//-BPT (es decir, el porcentaje de carácter tetraédrico o piramidal disminuye, respectivamente).
- b) si la distancia D->A se acerca más a la suma de los radios de van der Waals, la geometría local tetracoordinada tetraédrica o tricoordinada piramidal no experimenta ninguna distorsión (cero por ciento de BPT o y/-BPT).

Figura 1.8. Gráfico de desplazamiento de geometría tetraédrica a BPT (o piramidal a ψ -BPT).

1.3 Orden de enlace.

Para poder establecer la magnitud de una interacción intramolecular D^-A se ha empleado ampliamente el orden de enlace propuesto por Pauling.^{14-16,22-24} La dependencia del orden de enlace con respecto la longitud de enlace es logarítmica (Figura 1.9) y la ecuación que mejor ajusta los datos es la siguiente:

Figura 1.9. Orden de enlace vs longitud de enlace (Å)

1.4 Sistemas que pueden presentar una interacción intramolecular $D \rightarrow A$.

La capacidad que tienen los elemento de los grupos 14 y 15 de aumentar su número de coordinación a través de interacciones intramoleculares en compuestos que en su estructura presentan en posiciones adecuadas átomos con características electrónicas aceptoras A y átomos donadores D ha sido ampliamente estudiada en diferentes sistemas. Algunos de estos sistemas se presentan en la figura 1.10.

Figura 1.10. Enlaces intramoleculares entre $D \rightarrow A$ en algunos heterociclos.

De los cuatro tipos de compuestos heterocíclicos, los sistemas **III** y **IV** son los que se tratarán con más detalle, y de éstos, son los segundos los que son objeto de la presente tesis.

Los compuestos del tipo III y IV muestran una característica estructural en común y es que ambos exhiben una interacción intramolecular transanular en posiciones relativas 1,5 entre los átomos aceptor y donador ($D \rightarrow A$). Al tener lugar esta interacción, el numero de coordinación del átomo aceptor aumenta y se forman de manera simultanea dos anillos de tipo quilato de cinco miembros, principalmente cuando la interacción transanular es lo suficientemente fuerte.

1.4.1 Nomenclatura.

La nomenclatura empleada para nombrar a los compuestos de anillos de ocho miembros del tipo III esta basada en el sistema Hantzsch-Widman, cuya característica principal radica en la utilización de sufijos específicos que indican el tamaño del anillo.²⁵ Con base en lo anterior, a los anillos saturados de ocho miembros se les asigna la terminación -ocano. Adicionalmente, se emplea la nomenclatura de sustitución en donde un heterociclo se considera como resultado de reemplazar algunos átomos de carbono por otros átomos. En la tabla 1.2 se presentan algunos de los prefijos empleados para denotar la presencia de metales o algún otro elemento.

Tabla 1.2. I	refijos empleado	s en el sistema Hantzs	ch-Widman.
Elemento	Prefijo	Elemento	Prefijo
Silicio	Sila-	Oxígeno	Oxa-
Germanio	Germa-	Azufre	Tia-
Estaño	Estana-	Selenio	Selena-
Nitrógeno	Aza-	Telurio	Telura-
Fósforo	Fosfa-	Flúor	Fluora-
Arsénico	Arsa-	Cloro	Clora-
Antimonio	Estiba-	Bromo	Broma-
Bismuto	Bisma-	Yodo	Yoda-

Tabla 1.2.	Prefijos	emplead	os en el	sistema	Hantzsch-	Widman.
				0.0000000000000000000000000000000000000		

De esta manera, cada heteroátomo en el anillo se numera escogiendo la secuencia de números más pequeña. Así, para D = N el nombre genérico es l-aza-4.6-dielemento-2-meta]ocano, si D = O; el nombre es l-oxa-4,6-dielemento-2-metalocano y para D = E = S el nombre es 1,3,6 tritia-2-metalocano. En la figura 1.11 se muestran estas tres posibilidades.

Figura 1.11. Asignación de nombres para algunos elementodielementometalocanos.

La nomenclatura empleada para dar nombre a los compuestos del tipo IV con anillos fusionados que contienen fósforo, silicio o germanio como parte del esqueleto sigue también el sistema Hantzsch-Widman, en donde al anillo central de ocho miembros se le asigna la terminación - *ocina* y con los prefijos listados en la tabla 1.2 se denota la existencia de los átomos aceptores (fósforo, silicio o germanio). De esta manera, cada átomo en el anillo se numera escogiendo la secuencia de números más pequeña. La unión de los anillos laterales (fusionados) se indica por medio de letras las cuales son designadas a cada uno de los enlaces, asignando la letra *a* al enlace entre los átomos uno y dos del anillo de ocho miembros, como se muestra en la figura 1.12.

Figura 1.12. Nomenclatura para algunas dibenzoelementodioxametalocinas.

1.5 Metalocanos

Los compuestos del tipo **III** denominados como metalocanos han sido ampliamente estudiados principalmente por Draeger *et a*/,¹⁴⁻¹⁶ Jurkschat *et al*^{26,27} y Cea *et al*;²⁸ lo anterior está ampliamente documentado en un revisión reciente. En estos compuestos la interacción intramolecular D→A ha sido estudiada principalmente por espectroscopia vibracional, difracción de rayos X de monocristal y para los estanocanos, RMN de ¹¹⁹Sn en solución.

La fuerza de la interacción D \rightarrow A puede ser afectada por la basicidad del átomo donador (D) o el heteroátomo (E) unido al átomo aceptor, la acidez del átomo aceptor (A), la electronegatividad de los sustituyentes exocíclicos (L¹, L²) unidos al átomo aceptor y la existencia del par libre

de electrones estereoquímicamente activo cuando el átomo es un elemento del grupo 15 (Figura 1.13).

Figura 1.13. Estructura de metalocanos con elementos de los grupos 14 y 15.

Una de las características de los metalocanos es que los grupos - CH_2CH_2 - proporcionan al anillo una gran flexibilidad, la cual se ve reflejada en la gran diversidad de isómeros conformacionales que se han encontrado tanto en solución como en estado sólido (Figura 1.14).

Figura 1.14. Equilibrios conformacionales para los metalocanos.

A continuación se revisará la síntesis de algunos metalocanos y sus características estructurales desde el punto de vista del aumento del número de coordinación de elementos del grupo 14 y 15 que actúan como aceptores en el sistema metalocano a través de la existencia de una interacción intramolecular $D \rightarrow A$ (D = N, O, S).

1.5.1 Hipervalencia en germocanos.

Cuando el átomo aceptor es germanio los compuestos del tipo III son denominados germocanos. En este tipo de compuestos el átomo de germanio puede aumentar su número de

coordinación de tetracoordinado a pentacoordinado o de tetracoordinado a hexacordinado a través de la existencia de una o dos interacciones intramoleculares de átomos donadores (D) hacia el átomo de germanio (Figura 1.15).

Figura 1.15. Penta- y hexacoordinación del átomo de germanio.

1.5.1.1 Interacción intramolecular N \rightarrow Ge.

Los germocanos más comunes con D = nitrógeno son los 1-aza-4,6-dicarbagermocanos²⁹ y l-aza-4,6-dioxagermocanos " (Figura 1.16). El estudio de difracción de rayos x de monocristal de estos compuestos muestra la existencia de una interacción intramolecular entre el átomo de nitrógeno y el átomo de germanio que cumple con las características de un enlace secundario.⁵ A continuación se tratará con más detalle la síntesis de estos compuestos así como sus características estructurales.

1-aza-4,6-dicarbagermocanos

L₂-Ge-utlO

1-aza-4,6-dioxagermocanos

Figura 1.16. 1-aza-germocanos.

La síntesis de 1 -aza-4,6-dicarbagermocanos se ha llevado a cabo mediante la reacción de un reactivo de Grignard del tipo RN[(CH₂)₃MgCl]₂ con GeCl₄ o PhGeCl₃ para dar los correspondientes dicarbagermocanos en bajos rendimientos del 3-15% (Esquema 1.1).

$$RN[(CH_2)_3MgCl]_2+ GeCl_4 \longrightarrow RN(CH_2CH_2CH_2)_2GeCl_2$$

R = Me, PhCH₂, ^{*i*}Bu
Esquema 1.1. Síntesis de dicarbagermocanos.

Los 1 -aza-4,6-dioxagermocanos han sido sintetizados a partir de la reacción de diferentes dialcanolaminas $RN(CH_2CH_2OH)_2$ con diferentes compuestos de germanio tales como GeO₂, (RGeO_{1.5})_n, L,L₂GeH₂, L₁,L₂GeCl₂, L₁,L₂Ge(OR)₂ o R₂Ge(NMe₂)₂.³⁰⁻³³ Otro método utilizado es mediante la reacción del GeHal₄ con RN(CH₂CH₂OSiMe₃)₂ para dar los correspondientes 2,2-dihalogenogermocano (Esquema 1.2).³⁰⁻³³

 $RN(CH_{2}CH_{2}OH)_{2}+L_{1}L_{2}Ge(OR')_{2} \longrightarrow RN(CH_{2}CH_{2}O)_{2}GeL_{1}L_{2}$ $R = Me, \ ^{n}Pr$ $L_{1}, L_{2} = Me, Et$ $R' = Et, \ ^{i}Pr$ $MeN(CH_{2}CH_{2}OSiMe_{3})_{2}+GeHal_{4} \longrightarrow MeN(CH_{2}CH_{2}O)_{2}GeHal_{2}$ Hal = Cl, Br $E = ACC(CH_{2}CH_{2}O)_{2}GeHal_{2}$

Esquema 1.2. Síntesis de 1-aza-4,6-dioxagermocanos

Por otro lado, la síntesis de 2-dihidroxigermocanos también ha sido reportada a partir de la hidrólisis de los derivados diclorados^{30,32} (Esquema 1.3).

 $\frac{\text{MeN}(\text{CH}_2\text{CH}_2\text{O})_2\text{GeCl}_2}{\text{Esquema 1.3. Síntesis de 2,2-dihidroxigermocanos}} MeN(\text{CH}_2\text{CH}_2\text{O})_2\text{Ge}(\text{OH})_2$

1.5.1.2 Interacción intramolecular $D \rightarrow Ge (D = O, S)$.

Este tipo de interacción ha sido estudiada en germocanos con D = oxígeno o azufre como los l-oxa-4,6-ditiagermocanos y los 1,3,6-tritiagermocanos, respectivamente (Figura 1.17).

Figura 1.17. Germocanos.

La síntesis de los 1-oxa- y 1-tiagermocano D(CH₂CH₂S)₂GeCl₂ [D = O, S] respectivamente se ha realizado mediante la reacción de D(CH₂CH₂SH)₂ con GeCl₄ a reflujo en benceno (Esquema1.4)^{34,35}

$$D(CH_2CH_2SH)_2 + GeCl_4 \longrightarrow D(CH_2CH_2S)_2GeCl_2 + 2 HCl$$

 $D = O, S$
Esquema 1.4. Síntesis de 1-oxa- y 1- tiagermocanos.

También han sido sintetizados y caracterizados espirogermocanos asimétricos (una unidad de germocano) y espirogermocanos simétricos (espirobisgermocanos que poseen dos unidades de germocano) (Figura 1.18).^{30,31,36} Estos espirociclos han sido sintetizados por diferentes reacciones, por ejemplo la reacción de polisesquióxidos de germanio (HOOCCH₂CH₂GeO_{1.5})_n con trietanolamina o dietanolaminas N-sustituidas^{31,37} y la reacción de N-metildietanolimida con GeC₂ o (ⁿ-PrO)₄Ge en la presencia de etilenglicol. La reacción de tetralcóxidos de germanio con

la alcanolamina correspondiente³⁰ y la reacción de dihidroxigermanocanos con derivados de ditioles $[D(CH_2CH_2SH)_2; (D = O, S)]$ en metanol.³³

Figura 1.18. Espirogermocanos y espirobisgermocanos.

La estructura molecular de los germocanos ha sido determinada por difracción de rayos X de monocristal y su análisis determinó que la distancia de la interacción intramolecular D \rightarrow Ge es mayor a la suma de los radios covalentes pero significativamente menor a la suma de los radios de van der Waals, dando lugar a enlaces secundarios' (Tabla 1.1). El átomo de germanio en los germocanos se encuentra pentacoordinado o hexacoordinado debido a la existencia de una o dos interacciones intramoleculares D \rightarrow Ge (D = N, O, S).

La geometría de coordinación alrededor del átomo de germanio presenta un desplazamiento de tetraédrica a BPT, debido al aumento del número de coordinación de tetracoordinado a pentacoordinado mediante la existencia de una interacción $D \rightarrow Ge$, o de tetracoordinado a hexacoordinado con una geometría que puede ser descrita como un tetraedrobiapicado para el caso de los espirobisgermocanos simétricos que presentan dos interacciones $D \rightarrow Ge$ (Figura 1.19).

Figura 1.19. Estructura molecular de germocanos (los átomos de hidrogeno han sido omitidos).

La tabla 1.3 se muestra algunas de las características estructurales de germocanos junto con parámetros derivados de ellas.

Compuesto ^a	D	D→Ge (Å)	D→A-L1 (°)	$d(A-Ll_{ax})$ (Å)	confor- mación	oe ^b A-Ll _{ax}	oe^{b} D \rightarrow A	%BPT ^c (%)	$\Delta \theta^d$ (°)	$\frac{D^{e}}{(A)}$	Ref
BuN(CH2CH2CH2)GeCl2 (IIIGe1)	Ν	2.383	177.80	2.321	B-S	0.698	0.262	73.0	72.3	0.182	29
MeN(CH2CH2O)2GeBr2 (IIIGe2)	N	2.166(5)	170.3(1)	2.4148(8)	B-S	0.837	0.529	87.2	83.9	0.062	30
HN(CH2CH2O)2Ge(OH)2 (IIIGe3)	N	2.123(4)	177.9(2)	1.793(3)	B-S	1.400	0.609	90.0	70.6	0.172	33
MeN(CH2CH2O)2Ge(CSCHCHCH)2 (IIIGe4)	Ν	2.446(8)	162.1(4)	1.954(9)	S-S	1.110	0.213	68.9	56.7	0.266	32
MeN(CH ₂ CH ₂ O) ₂ Ge(OCH ₂) ₂ (IIIGe5)	N	2.159(3)	178.6(4)	1.808(3)	B-S	1.200	0.541	87.6	75.2	0.134	37
(EtO) ₂ OPCH ₂ N(CH ₂ CH ₂ O) ₂ - GeOCH ₂ (CH ₂ CHCH ₃ CO) (IIIGe6)	Ν	2.286	171.41	1.889	B-S	1.180	0.358	78.7	84.8	0.051	38
O(CH ₂ CH ₂ S) ₂ GeCl ₂ (IIIGe7) moléculas a y b	0	2.36(1) 2.39(1)	172.8(3) 169.3(3)	2.212(4) 2.204(4)	S-S S-S	1.001 0.981	0.264	73.0 71.1	60.8 62.7	0.293	34
S(CH ₂ CH ₂ S) ₂ GeCl ₂ (IIIGe8)	S	3.01	182.2	2.208(3)	B-S	0.994	0.083	49.0	54.2	0.354	35
O(CH2CH2S)2GeSO(C2H4) (IIIGe9)	0	2.492(3)	176.2(1)	1.806(2)	B-S	1.27	0.142	64.3	56.3	-	28
S(CH2CH2S)2GeSO(C2H4)2 (IIIGe10)	S	2.842(1)	174.96(7)	1.796(3)	B-S	1.300	0.172	60.1	64.0	-	28
O(CH ₂ CH ₂ S) ₂ Ge(SCH ₂) ₂ (IIIGe11)	0	2.616(1)	173.41(4)	2.226(8)	B-S	1.11	0.115	56.2	42.0		28
MeN(CH2CH2O)2]2Ge (IIIGe12)	Ν	2.307(2)	170.44(6)	1.821(1)	B-S	1.340	0.335	-	-	0.095	31
		3.016(2)	165.37(7)	1.755(2)	B-S	1.531	0.034	31.6	17.2	0.503	
PhN(CH ₂ CH ₂ O) ₂] ₂ Ge (IIIGe13)	N	2.795(2)	172.37(7)	1.761(2)	S-S	1.459	0.069	46.1	30.1	0.427	2.1
molécula a y b	i N	3.055(2)	162.59(7)	1.753(2)	B-S	1.472	0.030	29.1	13.5	0.523	51
		2.779(2)	171.71(6)	1.761(2)	S-S	1.458	0.072	47.1	31.5	0.424	
		2.914(3)	169.0(5)	2.218(1)		1.070	0.044	36.6	21.5	0.607	
[O(CH ₂ CH ₂ S) ₂] ₂ Ge (IIIGe14)	0	3.040(3)	166.7(5)	2.17(1)	DC	1.255	0.029	28.3	17.0	0.638	24
Moléculas a y b	0	2.955(3)	168.7(5)	2.217(1)	D-3	1.078	0.038	33.9	18.1	0.632	30
		2.946(3)	168.4(4)	2.222(1)		1.068	0.039	34.5	22.4	0.602	
S(CH ₂ CH ₂ S) ₂] ₂ Ge (IIIGe15)	S	3.237(3) 3.453(3)	174.5	2.236(3)	B-S	1.013	0.040	34.0	27.4	0.569	36

^dLa numeración IIIGei indica un compuesto iésimo del tipo III que contiene germanio. ^b $oe = 10^{-(1.41 \text{ }\Delta d)}, \Delta d = (d_{exp} - \Sigma r_{exv});^{24} [\Sigma r_{cov}(N, \text{ Ge}) = 1.97 \text{ }\text{ }\text{ }\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(O, \text{ Ge}) = 1.95 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(S, \text{ Ge}) = 2.24 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.36 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 1.99 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{Cl}) = 2.21 \text{ }\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{}\text{}\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{}\text{}\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{ }\text{}, [\Sigma r_{cov}(\text{Ge}, \text{}\text{}, [\Sigma r_{cov}(\text{Ge}, \text{}, [\Sigma r_{cov}(\text{Ge}, [\Sigma r_{cov}([\Sigma r_{c$

^cBPT, si D \rightarrow Ge = $\Sigma r_{vdW}(D\rightarrow$ Ge) la geometría tiene carácter de T_d, si D \rightarrow Ge = $\Sigma r_{cov}(D\rightarrow$ Ge) la geometría tiene carácter de BPT.⁴⁹⁻²¹ [$\Sigma r_{vdW}(N,Ge) = 3.5 \text{ Å}$], [$\Sigma r_{vdW}(S, Ge) = 3.75 \text{ Å}$], [$\Sigma r_{vdW}(O, Ge) = 3.47 \text{ Å}$], [$\Sigma r_{cov}(N, Ge) = 1.97 \text{ Å}$], [$\Sigma r_{cov}(S, Ge) = 2.24 \text{ Å}$], [$\Sigma r_{cov}(O, Ge) = 1.95 \text{ Å}$]. ${}^{d}\Delta\theta = \Sigma \theta_{eq} - \Sigma \theta_{ax}$, \therefore si $\Delta\theta = 0^{\circ}$ la geometría es T_d, si $\Delta\theta = 90^{\circ}$ la geometría es BPT.¹⁴⁻¹⁶

'Si D = 0.71 Å la geometría es T_d, si D = 0.00 Å la geometría es BPT.¹⁴⁻¹⁸

Del análisis estructural de los germocanos se puede mencionar que el *oe* de la interacción intramolecular D \rightarrow Ge disminuye cuando el átomo donador es cambiado de oxígeno a azufre en los compuestos **IIIGe7 y IIIGe8** lo anterior también se ve reflejado en la magnitud del desplazamiento de la geometría del átomo de germanio. Sin embargo, en otros germocanos se encuentra un comportamiento opuesto. Para el caso de los espirociclos asimétricos **IIIGe9, IIIGeIO y IIIGeII,** la D \rightarrow Ge es más fuerte para el caso de los 1,3,6-tritiagermocanos que para los l-oxa-4,6-ditiagermocanos. Los homólogos espirocíclicos simétricos **IIIGe14 y IIIGe15** donde el átomo de germanio se encuentra hexacoordinado muestran el *oe* más pequeño de los germocanos ya sea con D = O o S. Para el caso de los azagermocanos lo cual indica que el átomo de nitrógeno es mejor donador que los átomos de oxígeno y azufre. Se debe tomar en consideración que el átomo E es oxígeno para el caso de los azagermocanos y E es igual a azufre para el caso de los oxa- y los tiagermocanos y E es igual a

Los germocanos presentan diferentes conformaciones por ejemplo, el compuesto l-oxa-4,6ditiagermocano **IIIGe7** presenta una conformación de silla-silla, mientras que el 1,3,6tritiagermocano **IIIGe8** muestra una conformación de bote-silla.

Las distancias de la interacción intramolecular transanular D \rightarrow Ge (D = O, S) en los germocanos son más largas que la suma de los radios covalentes en un intervalo del 21 al 56 % cuando el átomo donador es oxígeno [$\Sigma r_{cov}(O,Ge) = 1.95 \text{ Å}$], ^{7,8} y cuando el átomo donador es azufre en un intervalo del 27 al 54% [$\Sigma r_{cov}(S,Ge) = 2.24 \text{ Å}$].^{7,8}

1.5.2 Hipervalencia en estanocanos.

En este tipo de compuestos el átomo de estaño puede aumentar su número de coordinación de tetracoordinado a pentacoordinado o de tetracoordinado a hexacoordinado a través de la existencia de una o dos interacciones intramoleculares de un átomo donador (D) hacia el átomo de estaño (Figura 1.20).

Figura 1.20. Pentacoordinación del átomo de estaño.

1.5.2.1 Interacción intramolecular N→Sn.

Los compuestos más comunes de estanocanos son aquellos en donde el átomo donador es nitrógeno dando lugar a los 1 -aza-4,6-dicarbaestanocanos,²⁹ 1 -aza-4,6-dioxaestanocanos³⁹ y l-aza-4,6-ditiaestanocanos⁴⁰⁻⁴¹ (Figura 1.21). Estudios de difracción de rayos X de monocristal

han mostrado la existencia de una interacción entre el átomo de nitrógeno y el átomo de estaño $N \rightarrow Sn$.

La síntesis de 1 -azadicarbaestanocanos se ha llevado a cabo mediante la reacción de un reactivo de Grignard del tipo RN[(CH₂)₃MgCl]₂ con SnHal₄ o PhSnHal₃ para dar el correspondiente dicarbaestanocano, Estos grupos halógeno pueden ser sustituidos por ligantes OSiPh₃ a partir de los derivados diclorados con NaOSiPh₃ (Esquema 1.5).²⁹

 $RN[(CH_2)_3MgCl]_2 + SnHal_4 \longrightarrow RN(CH_2CH_2CH_2)_2SnHal_2$ $RN(CH_2CH_2CH_2)_2SnHal_2 + NaOSiPh_3 \longrightarrow RN(CH_2CH_2CH_2)_2Sn(OSiPh_3)_2$ $R = Me, PhCH_2, {}^{i}Bu$ Hal = Cl, Br, I Esquema 1.5. Sintesis de 1-azadicarbaestanocanos.

Los 1-azadioxaestanocanos y 1-azaditiaestanocanos han sido sintetizados a partir del diol, del ditiol o de las sal ditiolada RN(CH₂CH₂ENa)₂ [E - O, S] con SnHal₄ o PhSnCl₃.

1.5.2.2 Interacción intramolecular $D \rightarrow Sn (D = O, S)$.

Se ha informado acerca de la síntesis de estanocanos con D = oxígeno o azufre como los l-oxa-4,6-ditiaestanocanos y los 1,3-6-tritiaestanocanos, respectivamente (Figura 1.22).

Figura 1.22. Estanocanos.

La síntesis de los 1-oxa y 1-tiaestanocano $D(CH_2CH_2S)_2SnHal_2$ [D = O, S; Hal = Cl, Br, I], respectivamentese ha llevado a cabo mediante la relacion del la salditiolada de sodio

 $D(CH_2CH_2SNa)_2$ [D = O, S]con el correspondiente tetrahalogenuro de estaño; la reacción de la sal de sodio del ligante ditiolato con Me₂SnCl₂, Ph₂SnCl₂, PhSnCl₃, ⁿ·BuSnCl₃ da como resultado la obtención del correspondiente estanocano (Esquema 1.6).

$$D = O, S$$

$$L_{2} = Hal, Me, Ph, Ditioligante$$

$$L_{2} = Hal, Me, Ph, ^{n}Bu$$

$$D(CH_{2}CH_{2}SNa)_{2} + SnHal_{4} \longrightarrow D(CH_{2}CH_{2}S)_{2}SnHal_{2} + 2 NaHal$$

$$Hal = Cl, Br, I$$

$$D(CH_{2}CH_{2}SNa)_{2} + Ph_{2}SnCl_{2} \longrightarrow D(CH_{2}CH_{2}S)_{2}SnPh_{2} + 2 NaCl$$

$$Esquema 1.6. Sintesis de 1-oxa- y 1- tiagermocanos.$$

La síntesis de espiroestanocanos simétricos se ha realizado mediante la reacción de dos equivalentes del ligante $D(CH_2CH_2ENa)_2$ [D = MeN, S, O; E = O, S] con el SnCl₄ (Esquema 1.7).^{43,51}

Esquema 1.7. Síntesis de espiroestanocanos

La tabla 1.4 presenta las características estructurales y parámetros derivados de ellas de los estanocanos. De la tabla se observa que en todos los estanocanos la distancia de la interacción intramolecular D \rightarrow Sn (D = RN, O, S) es más larga que la suma de los radios covalentes, pero significativamente más corta que la suma de los radios de van der Waals. La fuerza de la interacción intramolecular D \rightarrow Sn en los estanocanos disminuye de acuerdo al siguiente orden: D = RN > S > O. Lo anterior es fundamentado con el análisis estructural de acuerdo a los parámetros calculados como son el *oe*, el desplazamiento de BPT, el $\Delta\theta y D$.

Compuesto ⁴	D	D→Sn (Å)	$D \rightarrow Sn-L_1$ (°)	d(A-L _{tax}) (Å)	confor- mación	oe ^b Sn-L _{tax}	<i>oe</i> ^b D→Sn	BPT ^r (%)	$\frac{\Delta \theta^l}{(^{\circ})}$	$\stackrel{D^r}{({ m \AA})}$	Ref
MeN(CH ₂ CH ₂ CH ₂) ₂ SnCl ₂ (IIISn1)	Ν	2.441(8)	176.8	2.455(3)	B-S	0.735	0.320	82.0	60.5	0.313	26
MeN(CH ₂ CH ₂ CH ₂) ₂ SnPhCl (IIISn2)	Ν	2.435(5)	170.1(1)	2.550(8)	B-S	0.540	0.326	82.3	70.0	0.211	29
[McN(CH ₂ CH ₂ CH ₂) ₂ SnS] ₂ (IISn3)	N	2.553(3)	1767(5)	2.520(3)	B-S	0.746	0.279	74.8	58.3	0.333	43
"BuN(CH ₂ CH ₂ CH ₂) ₂ SnCl ₂ (IIISn4)	N	2.462(3)	176.1(3)	2.474(1)	B-S	0.691	0.299	80.6	64.7	0.272	29
¹ BuN(CH ₂ CH ₂ CH ₂) ₂ Sn(OSiPh ₃) ₂ (IIISn5)	N	2.494(3)	174.0(1)	2.026(2)	B-S	0.92	0.269	78.6	60.9	0.287	29
PhCH ₂ N(CH ₂ CH ₂ CH ₂) ₂ SnCl ₂ (HISn6)	N	2.470(5)	170.0(7)	2.487(2)	S-S	0.662	0.291	80.1	61.9	0.29	29
PhCH ₂ N(CH ₂ CH ₂ CH ₂) ₂ Sn(OSiPh ₃) ₂ (IIISn7)	N	2.530(7)	170.1(7)	2.026(2)	B-S	0.92	0.240	76.3	58.9	0.301	29
$\frac{MeN(CH_2CH_2CH_2)_2Sn(S_2CNMe_2)\left[(CH_2)_2CO_2Et\right]}{(IIISn8)}$	Ν	2.323(3)	173.4(2)	2.097(2)	diplanar	1.30	0.589	*	*	4	39
$MeN(CH_2CH_2S)_2SnMe_2~(IIISn9)$	N	2.565(2) 2.578(2)	165.8(2) 167.0(9)	2.159(2) 2.159(1)	B-S B-S			74.0 73.2	55.5 55.5	0.365	40 41
[MeN(CH2CH2S)2SnPh]2CH2 (IIISn10)	N	2.652	164.6	2.159	diplanar			68.5	52.6	0.384	42
[HO(CH ₂) ₂ N(CH ₂ CH ₂ O) ₂]Sn (IIISn11)	N	2.358	164.2	2.038	B-S	1.40	0.526	3	*	ik	44
O(CH2CH2CH2)2SnCl2 (IIISn12)	0	2.384(6)	170.4(9)	2.546(7)	S-S	0.622	0.35	84.3	44.6	0.449	26
O(CH2CH2CH2H2SuBt2 (IIISn13)	0	2.421(7)	171.3(7)	2.574(1)	S-S	0.786	0.255	93.5	47.5	0.413	29
S(CH ₂ CH ₂ CH ₂) ₂ SnCl ₂ (IIISn14)	S	2.851(3)	178.9(1)	2.449(3)	B-S	0.749	0.231	72.5	60	0.32	26
O(CH ₂ CH ₂ S) ₂ SnCl ₂ (IIISn15)	0	2.359(6)	179.9(2)	2.376(3)	S-S	0.95	0.37	85.8	60.5	0.317	45
O(CH ₂ CH ₂ S) ₂ SnBr ₂ (IIISn16)	0	2.41(1)	165.8	2.536(2)	S-S	0.92	0.32	82.6	59.0	0.324	16
O(CH2CH2S)2SnI2 (IIISn17)	0	2.431(5)	166.4(1)	2.738(1)	S-S	0.83	0.3	81.2	51.0	0.408	16
$O(CH_2CH_2S)_2SnMe_2$ (IIISn18)	0	2.774(5)	163.6(3)	2.183(8)	S-S	0.9	0.09	59.1	37.4	0.597	15
O(CH ₂ CH ₂ S) ₂ SnMeCI (IIISn19)	0	2.42(2)	168.3(5)	2.413(1)	S-S/B-S	0.92	0.31	81.9	59.8	0.317	15
O(CH2CH2S)2SnMeBr (IIISn20)	0	2.440(4)	166.5(1)	2.561(1)	S-S	0.84	0.29	80.6	56.4	0.353	15
O(CH2CH2S)2SnMet (IIISn21)	0	2.466(3)	167.0(1)	2.762(1)	S-S	0.77	0.26	78.9	52.8	0.385	15
O(CH ₂ CH ₂ S) ₂ SnPhMe (HISn22)	0	2.677(5)	167.9(4)	2.150(3)	S-S	1	0.13	65.3	34.4	0.533	46
O(CH ₂ CH ₂ S) ₂ SnPh ₂ (IIISn23)	0	2.66(7)	168.8(3)	2.147(7)	monoplanar	1	0.14	66.5	35.7	0.519	47
O(CH ₂ CH ₂ S) ₂ SnPhCl (IIISn24)	0	2.41(1)	167.3(4)	2.453(1)	diplanar	0.81	0.30	82.6	62.7	0.295	48
O(CH2CH2S)2Sn("Bu)Cl (HISn25)	0	2.409(7)	169.7(2)	2,407(3)	B-S	0.95	0.32	82.6	62.0	0.303	49
O(CH ₂ CH ₂ S) ₂ Sn(S ₂ CNEt ₂)Cl (IIISn26)	0	2.727(11)	139.01(9)	2,493(1)	S-S	0.84	0.05	Carto,		March 184	28
O(CH2CH2S)2Sn("Bu)(S2CNEt2) (IIIbSn27)	0	2.723(4)	158.9(1)	2,490(6)	B-S	0.85	0.11	62.4	42.1		28
O(CH ₂ CH ₂ S) ₂ Sn(S ₂ CNEt ₂) ₂ (IIISn28)	0	3.229(5)	141.55(9)	2.612(2)	B-S	0.6	0.022	-	-	-	28
O(CH ₂ CH ₂ S) ₂ Sn("Bu)(S ₂ CNC ₄ H ₈ NCS ₂) (IIISn29)	0	2.688(3)	159.9(2)	2.509(3)	B-S	0.8	0.13	64.64	34.3		28
O(CH2CH2S)2Sn("Bu)(S2PO2C3H4Et2) (IIISn30)	0	2.468(8)	163.0(2)	2.509(3)	B-S	0.8	0.26	78.8	58.1	0.435	50
O(CH ₂ CH ₂ S) ₂ Sn("Bu)(S ₂ PO2CHMeCH ₂ CHMe), (IIISn31V	0	2.555(2)	162.34(5)	2.496(4)	B-S	0.83	0.2	73.2	52.51	- Another	28

Compuesto"	D	D→Sn (Å)	D→Sn-L1 (°)	$d(A-L_{1ax})$ (Å)	confor- mación	oe ^h Sn-Ll _{ix}	<i>oe"</i> D→Sn	BPT ^{<} (%)	$\Delta \theta^d$ (°)	$\frac{\partial^{e}}{\langle \hat{A} \rangle}$	Ref
$(OCH_2CH_2S)_2Sn(S_2CNMe_2)(C_2H_4CO_2Me)$ (IIISn32)	0	2.625	159.9(1)	2.492(1)	B-S	0.84	0:16	68.7	49.3	0.435	39
[O(CH ₂ CH ₂ S) ₂]Sn (IIISn33) moléculas a y b	0	2.776(4) 2.837(4) 2.758(4) 2.900(4)	165.4(1) 163.6(1) 166.5(1) 164.1(1)	2.412(2) 2.412(2) 2.416(2) 2.403(2)	B-S	1.09 1.09 1.08	0.098 0.08 0.103 0.08				51
S(CH ₂ CH ₂ S) ₂ SnCl ₂ (IIISn34)	S	2.760(3)	165.6(1)	2.392(3)	B-S	0.99	0.53	78.4	70.1	0.21	52
S(CH ₂ CH ₂ S) ₂ SnBr ₂ (IIISn35)	S	2.767(2)	174.5(1)	2.545(1)	B-S	0.9	0.34	78.0	69.9	0.21	16
S(CH ₂ CH ₂ S) ₂ Snl ₂ (IIISn36)	S	2.779(2)	177.6(1)	2.786(1)	B-S	0.71	0.33	77.2	70.1	0.21	16
S(CH ₂ CH ₂ S) ₂ SnMe ₂ (IIISn37)	S	3.514(1)	169.3(1)	2.147(3)	B-S	1.00	0.03	29.1	8.8	0.72	15
S(CH2CH2S)2SnMeCI (IIISn38)	S	2.863(1)	168.6(3)	2.444(1)	B-S	0.84	0.25	71.7	72.0	0.19	15
S(CH2CH2S)2SnMeBr (IIISn39)	S	2.835(2)	168.52(4)	2.582(1)	B-S	0.8	0.28	73.5	73.3	0.18	15
S(CH ₂ CH ₂ S) ₂ SnPh ₂ (IIISn40)	S	3.246(1)	170.8(1)	2.156(3)	B-S	0.98	0.07	46.7	31.0	0.56	53
S(CH ₂ CH ₂ S) ₂ SnPhC1 (IIISn41)	S	2.866(2)	174.2(1)	2.453(1)	B-S	0.81	0.30	71.5	73.3	0.20	54
S(CH ₂ CH ₂ S) ₂ Sn("Bu)Cl (IIISn42)	S	2.785(1)	170.22(6)	2.446(5)	B-S	0.83	0.32	76.8	80.9	0.18	49
$S(CH_2CH_2S)_2Sn(^{\circ}Bu)(S_2CNEt_2)$ (IIISn43)	S	3.175(1)	164.44(4)	2.517(2)	B-S	0.79	0.09				50
$S(CH_2CH_2S)_2Sn(^*Bu)(S_2POC_3H_4Et_2)$ (IIISn44)	S	2.940(7)	166.0(2)	2.538(3)	B-S	0.72	0.2	66.7	63.7	0.31	50
$S(CH_2CH_2S)_2Sn("Bu)(S_2POCHMeCH_2Me)$ (IIISn45)	S	2.982(2)	166.75(6)	2.527(2)	B-S	0.75	0.17	63.9	63.7		28
$S(CH_2CH_2S)_2Sn("Bu)\{S_2P(O'Pr)_2\} (IIISn46)$	S	3.027(1)	164.5(5)	2.526(1)	B-S	0.75	0.15	61.0	54.4		28
[S(CH ₂ CH ₂ S) ₂] ₂ Sn (IIISn47)	S	3.074(3) 3.241(3)	170.7(1) 167.8(1)	2.434(2) 2.424(2)	B-S B-S	1.02	0.13				51
S(CH ₂ CH ₂ S) ₂ Sn(SCH ₂) ₂ (IIISn48) moléculas a y b	S	2.815(1) 2.840(1)			B-B B-S	0.99	0.29	74.8 73.2	62.3 65.4	0.31	55

^{*a*} La numeración IIISni indica un compuesto iésimo del tipo III que contiene estaño ^{*b*} $oe = 10^{-1.41} \frac{4d}{2^4} \Delta d = (d_{exp} - \Sigma r_{cov})$, ²⁴ [Σr_{cov} (S, Sn) = 2.43 Å], [Σr_{cov} (O, Sn) = 2.14 Å], [Σr_{cov} (N, Sn) = 2.16 Å], [Σr_{cov} (Sn, Cl) = 2.40 Å], [Σr_{cov} (Sn, Br) = 2.55 Å], [Σr_{cov} (Sn, I) = 2.74 Å], [Σr_{cov} (Sn, C) = 2.18 Å]. ^{7,8}

⁶BPT, si S \rightarrow Sn = $\Sigma r_{vdW}(S \rightarrow$ Sn) la geometría tiene carácter de T_d, si S \rightarrow Sn = Σr_{cov} (S \rightarrow Sn) la geometría tiene carácter de BPT.¹⁹⁻²¹ [$\Sigma r_{vdW}(S, Sn) = 3.96 \text{ Å}$], [$\Sigma r_{cov}(S, Sn) = 2.43 \text{ Å}$].^{7,8}

 ${}^{d}\Delta\theta = \Sigma \theta_{eq} - \Sigma \theta_{ax}$ \therefore si $\Delta\theta = 0^{\circ}$ la geometría es T_d, si $\Delta\theta = 90^{\circ}$ la geometría es BPT.¹⁴⁻¹⁶ e Si D = 0.71 Å la geometría es T_d, si D = 0.00 Å la geometría es BPT.¹⁴⁻¹⁸

* el átomo de estaño se encuentra hexacoordinado con geometría octaédrica.
La interacción D \rightarrow Sn decrece cuando los halógenos son parcialmente o totalmente reemplazados por grupos metilo, ⁿ-butilo, fenilo o ligantes potencialmente bidentados. La conformación que adoptan los 1 -azaestanocanos y los 1-tiaestanocanos es la de bote-silla, mientras que los 1-oxaestanocanos adoptan la de silla-silla. La figura 1.23 muestra la estructura molecular de algunos estanocanos.

1.5.3 Hipervalencia en plumbocanos.

Los plumbocanos análogos a los germocanos y estanocanos son poco conocidos. Sólo dos del tipo $D(CH_2CH_2S)_2PbPh_2$ [D = O, S respectivamente] han sido informados.⁵⁶ Estos compuestos fueron preparados mediante la reacción entre difenildiacetatoplomo(IV) y la correspondiente sal de sodio del ligante $[D(CH_2CH_2SNa)_2 (D = O, S)]$. Sin embargo, solamente el compuesto O(CH₂CH₂S)₂PbPh₂ ha sido caracterizado por difracción de rayos X de monocristal en dos sistemas (ortorrómbico y triclínico); en ambos la celda unitaria presenta dos moléculas cristalográficamente independientes. La interacción intramolecular O-Pb es menor a la suma de los radios de van der Waals $[\Sigma r_{vdw}(O, Pb) = 3.54 \text{ Å}].^{8,9}$ Las distancias encontradas para la interacción O→Pb en el sistema ortorrómbico son de 2.855(5) y 2.888(6) Å y la conformación que adopta en las dos moléculas es de silla-silla. Las distancias encontradas para la interacción $0 \rightarrow Pb$ en el sistema triclínico son de 2.92(1) y 3.08(1) Å y la conformación que adopta la molécula donde la distancia 0→Pb es más corta es de sillasilla y cuando la distancia O-Pb es más larga es de bote-silla. Tomando en consideración la interacción O-Pb en las cuatro moléculas el átomo de plomo se encuentra pentacoordinado con una geometría de tetraedro monoapicado. En la tabla 1.5 se enlistan las características estructurales para el compuesto $O(CH_2CH_2S)_2PbPh_2$ (ortorrómbico IIIPbl; triclínico **IIIPb2**) y las figuras 1.24 y 1.25 se ilustra la estructura molecular.

Compuesto ^a	$O \rightarrow Pb$ (Å)	$O \rightarrow Pb-C$	confor- mación	oe^{b} $O \rightarrow Pb$	BPT ^c	$\Delta \theta^{f}$	$\frac{D^e}{(\Lambda)}$	Ref
O(CH CH C) DEDE	(11)	()	macron	0 10	(70)		(1)	
$O(CH_2CH_2S)_2PDPn_2$ (IIIPb1)	2.855(5)	157.78	S-S	0.119	51.1	23.3	0.624	51
ortorrómbico	2.888(6)	161.14	S-S	0.107	48.6	20.2	0.650	20
moléculas a y b								
$(\mathbf{IIIPb2})$	2.92(1)	158.61	S-S	0.096	46.3	16.2	0.687	1212
triclínico moléculas a v b	3.08(1)	163.17	B-S	0.057	34.4	12.3	0.716	56

Tabla 1.5. Características estructurales de plumbocanos y parámetros derivados de ellas.

^{*a*} La numeración IIIPbi indica un compuesto iésimo del tipo III que contiene plomo ^{*b*} $oe = 10^{-(1.41 \text{ Jd})}$,²⁴ $\Delta d = (d_{exp} - \Sigma r_{cov})$, [$\Sigma r_{cov}(O, Pb) = 2.20 \text{ Å}$].^{7,8}

^cBPT, si O \rightarrow Pb = $\Sigma r_{vdW}(O \rightarrow$ Pb) la geometría tiene carácter de T_d, si O \rightarrow Pb = $\Sigma r_{cov}(O, Pb)$ la geometría tiene carácter de BPT.¹⁹⁻²¹ [$\Sigma r_{vdW}(O,Pb)$ = 3.54 Å], [$\Sigma r_{cov}(O,Pb)$ = 2.20 Å].^{7.8} ${}^{d}\Delta\theta = \Sigma\theta_{eq} - \Sigma\theta_{ax}$; si $\Delta\theta = 0^{\circ}$ la geometría es T_d, si $\Delta\theta = 90^{\circ}$ la geometría es BPT.¹⁴⁻¹⁶ e Si D = 0.71 Å la geometría es T_d, si D = 0.00 Å la geometría es BPT.¹⁴⁻¹⁸

O1→Pb1 = 2.92(1) Å y O2→Pb2 = 3.08(1) Å Figura 1.25. Estructura molecular del plumbocano IIIPb2 en el sistema cristalino triclínico.56

1.5.4 Hipervalencia en arsocanos.

El estudio del aumento del número de coordinación del átomo de arsénico(III) a través de interacciones intramoleculares con un átomo donador (D→As) ha sido ampliamente tratado en arsocanos donde el átomo D = O o S y el ligante exocíclico pueder ser **monodentado** o bidentado^{28,57} (Figura 1.26). Debido a la presencia de estas interacciones D→As en los arsocanos, el arsénico aumenta su número de coordinación de tricoordinado a tetra-o pentacoordinado cuando el ligante exocíclico actúa como mono- o bidentado respectivamente. Los ligantes monodentados puede ser halógenos y el ligante bidentado puede ser un ditiofosfato [S₂P(OR)₂], un ditiocarbamato [S₂CN(R)₂]^{58,59} o un ditiofosfinato [S₂P(R)₂].

La síntesis de los arsocanos monoclorados se ha llevado a cabo mediante la reacción del ditiol $D(CH_2CH_2SH)_2$ con $AsCl_3$.⁵⁷ Los derivados con ligantes ditiofosfato $[S_2P(OR)_2]$,^{28,61} ditiocarbamato $[S2CN(R)_2]^{28,59}$ o ditiofosfinato $[S_2P(R)_2]^{60}$ se obtuvieron de la reacción a partir del derivado clorado correspondiente y la sal de sodio, potasio o amonio del ligante 1,1-ditiolato.²⁸

Las características estructurales de los arsocanos son enlistadas en la tabla 1.6, donde se muestra la magnitud de la distancias de la interacción intramolecular $D \rightarrow As$ (D = O, S), el *oe*, el desplazamiento de geometría de tetraédrica a BPT y el $\Delta \theta$.

Las distancias D \rightarrow As (D = O, S) en todos los arsocanos son más largas que la suma de los radios covalentes pero significativamente más cortas que la suma de los radios de van der Waals [$\Sigma r_{vdW}(O, As) = 3.37 \text{ Å}; \Sigma r_{cov}(O, As) = 1.93 \text{ Å}; \Sigma y_{dW}(S, As) - 3.65 \text{ Å}; \Sigma r_{COV}(S, As) = 2.22 \text{ Å}].^{7,8}$

La fuerza de la interacción intramolecular $D \rightarrow As$ (D = O, S) en los arsocanos es menor en los derivados con D = O como se observa del análisis estructural y de los parámetros calculados como son el *oe*, el desplazamiento de BPT y el $\Delta \theta$.

La fuerza de la interacción se ve disminuida cuando los halógenos son reemplazados por ligantes potencialmente bidentados. La descripción de la geometría local del arsénico tetracoordinado es ψ -BPT donde las posición ecuatoriales son ocupadas por los átomos de azufre del tipo tiolato del ligante y el par libre de átomo de As(III) estereoquímicamente activo mientras que las posiciones

axiales son ocupadas por el átomo donador (D = O, S) y el ligante exocíclico (halógeno, ligante ditiolato), Con respecto a la conformación que adopta el anillo de ocho miembros para el caso de los arsocanos presenta tres conformaciones que son la bote-silla, silla-silla y bote-bote. El compuesto que presenta el mayor *oe*, y el mayor grado de desplazamiento de BPT presenta una conformación de bote-bote; en las figuras 1.27 y 1.28 se muestran la estructura molecular de algunos arsocanos.

Figura 1.27. Estructura molecular de arsocanos (los átomos de hidrógeno son omitidos).

Figura 1.28. Estructura molecular del compuesto **IIIAs11** (En la celda unitaria presenta dos moléculas de arsocano cristalográficamente independientes).⁶²

Compuesto ^a	D	D→As (Â)	$D \rightarrow As-L^1$ (°)	As-L ¹ (Å)	confor- mación	oe ^b As-L ¹	oe ^k D→As	BPT ^c (%)	$\Delta \theta^{\ell}$ (°)	Ref
O(CH ₂ CH ₂ S) ₂ AsCl (IIIAs1)	0	2.451(6)	168.43	2.269	B-S	0.725	0.156	63.8	12.5	57
O(CH ₂ CH ₂ S) ₂ AsBr (IIIAs2)	0	2.59		2.40		0.699	0.099	54.2		28
O(CH2CH2S)2AsI (IIIAs3)	0	2.46		2.65		0.540	0.152	63.2		28
O(CH ₂ CH ₂ S) ₂ As S ₂ CN(C ₂ CH ₂) ₂ O (IIIAs4)	0	2.957(4)	154.3(1)	2.280(2)	B-S	0.429	0.027	28.7	11.2	28
O(CH2H2S)2AsS2CN(CH2CH2)2 (IIIAs5)	0	2.702(5)	157.55(15)	2.275(2)	S-S	0.836	0.061	46.4	13.6	28
O(CH2CH2S)2AsS2Ph2 (IIIAs6)	0	2.678(5)	159.1(1)	2.286(2)	S-S	0.807	0.065	48.1	14.8	60
O(CH2CH2S)2AsS2P(OCH2)2CEt2 (IIIAs7)	0	2.627(8)	162.8(3)	2.287(4)	S-S	0.804	0.077	51.6	11.9	61
S(CH2CH2S)2AsCl (IIIAs8)	S	2.719(3)	189.5(3)	2.356	B-S	0.547	0.198	64.2	12.2	57
S(CH ₂ CH ₂ S) ₂ AsBr (IIIAs9)	S	2.70		2.54	B-S	0.703	0.210	65.5		28
S(CH ₂ CH ₂ S) ₂ AsI (IIIAs10)	S	2.77		2.77	B-S	0.365	0.168	60.7		28
[S(CH ₂ CH ₂ S) ₂ As] [*] [GaCl ₂] [*] (IIIAs11)	S	2.347(10) 2.391(9)			B-B B-B		0.662 0.574	89.8 86.8		62
$S(CH_2CH_2S)_2AsS_2CN(CH_2CH_2)\ (IIIAs12)$	S	3.170(2) 3.113(2)	158.85(7) 165.93(8)	2.307(2)	B-S B-S	0.746 0.754	0.046 0.056	33.1 37	11.6	28
S(CH2CH2S)2AsS2CNEt2 (IIIAs13)	S	3.172(2)	163.6(0)	2.305(1)	B-S	0.759	0.045	33.0	8.6	59
S(CH ₂ CH ₂ S) ₂ AsS ₂ PPh ₂ (IIIAs14)	S	2.881(4)	166.5(1)	2.414(3)	B-S	0.532	0.117	53.0	10.1	60
S(CH ₂ CH ₂ S) ₂ AsS ₂ P(OMe) ₂ (IIIAs15)	S	2.911(1)	168.0(1)	2.375(1)	B-S	0.605	0.106	51.0	9.1	58
S(CH2CH2S)2AsS2P[OCH(Me)2CH2] (IIIAs16)	S	2.942(11)	168.49(4)	2.357(1)	B-S	0.641	0.096	48.8	10.5	28

^{*a*} La numeración IIIAsi indica un compuesto iésimo del tipo III que contiene arsénico. ^{*b*} $oe = 10^{-(1.41 dd)}$;²⁴ $\Delta d = (d_{exp} - \Sigma r_{cov})$, [$\Sigma r_{cov}(As, Cl) = 2.19 Å$], [$\Sigma r_{cov}(As, Br) = 2.34 Å$], [$\Sigma r_{cov}(As, 1) = 2.53 Å$]^{7,8} ^{*c*} Si D \rightarrow As = $\Sigma r_{vdW}(D\rightarrow$ As) la geometría tiene carácter de Piramidal; si S \rightarrow As = $\Sigma r_{cov}(D\rightarrow$ As) [D = O, S] la geometría tiene carácter de BPT. ¹⁹⁻²¹ [$\Sigma r_{vdW}(O, As) = 3.37 Å$], [$\Sigma r_{cov}(O, As) = 1.93 Å$], [$\Sigma r_{vdW}(S, As) = 3.65 Å$], [$\Sigma r_{cov}(S, As) = 2.22 Å$]^{7,8}

 d Si $\Delta \theta = \theta_{eq} - [(\Sigma \theta_{ax})/2]; \therefore$ si $\Delta \theta = 0^{\circ}$ la geometria es piramidal y si el $\Delta \theta = 30^{\circ}$ la geometria es ψ -BPT.¹⁴⁻¹⁶

La gran variedad de isómeros conformacionales que presentan los metalocanos es debida a la presencia de los grupos -**CH2-CH2-** que confieren una gran flexibilidad al heterociclo de ocho miembros. Al reemplazar estos grupos por grupos más rígidos como anillos aromáticos se obtienen compuestos del tipo **IV** (Figura 1.29). Sin embargo, el estudio estructural de estos compuestos donde el átomo aceptor es un elemento del bloque p ha sido poco tratado. Estos estudios han mostrado que en estos sistemas se observa también la presencia de una interacción intramolecular transanular D—>A.

Figura 1.29. Compuestos del tipo IV.

1.6 Dibenzometalocinas.

Cuando el anillo de ocho miembros se encuentra fusionado a dos anillos aromáticos da origen a los compuestos del tipo IV. Los compuestos de este tipo que están informados en la literatura pueden ser agrupados en seis conjuntos:

A	D	Е	Ref
Metal de transición (Ti, V, Co, Cu, W)	S	0	63-65
Elemento representativo (P, Si, Ge)	S	0	66,67
Elemento representativo (Ge)	Se	Ο	68
Elemento representativo (Ge)	Р	S	69
Elemento representativo (Sb)	S Q	S	70-72
Metal de transición (Fe, Ni, Pd, Pt)	S	S	73

Los compuestos del tipo IV pueden ser preparados mediante la reacción entre un ligante $D(C_6H_4EH)_2$, (D = O, S, Se, P y E = O, S) y un sustrato adecuado que contenga al átomo aceptor A (como un halogenuro o alcóxido), de acuerdo al esquema general 1.8.

E = O, S A = P, Si, Ge, Ti, V, Co, Cu, W, Ni, Pd, Pt

Esquema 1.8. Síntesis de compuestos del tipo IV.

A continuación se revisarán algunos estudios de difracción de rayos X de monocristal para compuestos de fósforo (**IVP**),^{66,74-79} silicio (**IVSi**)^{66,67} y germanio (**IVGe**)^{68,69} denominados genéricamente como dibenzoelementodioxametalocinas (Figura 1.30). En estos trabajos sobresale la fuerza de la interacción transanular D->A, la cual influye en la geometría adoptada por los átomos de silicio, fósforo y germanio.

A= P, Si, Ge Figura 1.30. Dibenzoelementodioxametalocinas.

1.6.1 Hipervalencia en dibenzodioxatiafosfocinas.

Los compuestos del tipo **IV** donde el átomo aceptor A = Si o P han sido estudiados principalmente por Holmes *et al.*⁷⁴⁻⁷⁹ Sus estudios se han basado principalmente en aspectos relacionados con la hipervalencia, estereoquímica y reactividad de los átomos de fósforo y silicio contenidos en **IV** pueden, en principio, aumentar su número de coordinación, lo que conlleva a que este tipo de compuestos puedan ser empleados como modelos en la elucidación de mecanismos de reacciones de desplazamiento nucleofílico en enzimas.⁸⁰

Los estudios de difracción de rayos X de monocristal de compuestos del tipo **IV** muestran a los átomos de fósforo y silicio en estados hipervalentes, y su estabilidad ha sido atribuida a la presencia de donaciones transanulares $S \rightarrow P \ y \ S \rightarrow Si$. Holmes propone que el átomo de azufre proporciona una gran flexibilidad al anillo de ocho miembros proporcionando una gran variedad de conformaciones. Entre éstas se encuentran principalmente la conformacion la B-B, BT, B-S.⁷⁴⁻⁷⁹ En lo relativo a las geometrias locales de los átomos aceptores, se encuentra una gran diversidad, encontrandose las siguientes: piramidal, tetraédrica, ψ -BPT, BPT, piramide de base cuadrada, piramide de base rectangular y octaédrica. En las dos primeras geometrias locales, el átomo aceptor carece de interacciones, en las siguientes si existen interacciones del tipo S \rightarrow P y S \rightarrow Si.⁶⁶

Los estudios de difracción de rayos X muestran que la longitud de enlace $S \rightarrow P$ en derivados tetraoxifosforanos, pentaoxifosforanos, fosfitos y fosfatos de dibenzodioxatisfosfocinas se encuentra en el intervalo de la suma de radios covalentes y la suma de radios de van der Waals de los átomos involucrados [$\Sigma r_{COV}(S, P) = 2.12$ Å: $\Sigma r_{VdW}(S, P) = 3.65$ Å].

Por ejemplo, en los derivados tetraoxifosforanos, la distancia S \rightarrow P disminuye de 3.041(3) a 2.479(2) Å y los valores de desplazamiento estimados mediante el método de Holmes se encuentran en el intervalo de 23 a 70 %, que indican un desplazamiento de una geometría de pirámide de base cuadrada a una octaédrica (PC \rightarrow O_h), y un aumento en el número de coordinación del átomo de fósforo de cinco a seis (Algunos ejemplos se dan en la figura 1.31; los *oe* fueron calculados de acuerdo a Pauling²⁴).

Figura 1.31. Grado de desplazamiento de pirámide de base cuadrada a octaédrica (PBC→O_h) y *oe* de algunos derivados tetraoxifosforanos.⁸¹

En los derivados pentaoxifosforanos se observa que el átomo de azufre localizado en el anillo de ocho miembros presenta una interacción con el átomo de fósforo, resultando en una estructura hexacoordinada. El porcentaje de carácter octaédrico varía de 44 a 70 %, cuando la distancia $P \rightarrow S$ disminuye de 2.880(1) a 2.372(5) Å (Figura 1.32).

En los derivados fosfitos y fosfatos, los porcentajes de desplazamientos de los átomos de fósforo piramidales o tetraédricos hacia una bipirámide trigonal (BPT) se encuentran en el intervalo de 30 a 54 % cuando la distancia S \rightarrow P disminuye de 3.177(2) a 2.816(2) Å (Figura 1.33).

Es importante señalar que existen compuestos en los cuales la distancia transanular es lo suficientemente cercana o mayor a la suma de los radios de van der Waals como para no presentar una interacción intramolecular transanular y presentan una conformación B-S.^{77,84} Un ejemplo de compuestos de este tipo se muestra en la figura 1.34.

Figura 1.34. Dibenzodioxatiafosfocinas.77,84

Un aspecto estructural muy importante en los compuestos del tipo IV es la conformación que adopta el anillo central. En general se ha encontrado lo siguiente: Cuando la distancia de S \rightarrow P se acerca a la Σr_{cov} (S, P), la conformación que adopta el anillo de ocho miembros es de bote-bote (B-B) y cuando la distancia S \rightarrow P se acerca más a la Σr_{VdW} (S, P), la conformación es de bote-silla (B-S). Una forma más elaborada para describir la conformación del anillo es la siguiente: si el anillo central presenta un plano de simetría que contenga al eje S \rightarrow P, la conformación de anillo se describe como simétrica (*syn*), pero si no presenta un plano de simetría se describe como asimétrica (*anti*). De esta manera, la conformación que puede adoptar el anillo puede ser: *syn* bote-bote, *syn* bote-silla, *anti* bote-bote ó *anti* bote-silla.⁵

1.6.2 Hipervalencia en dibenzodioxatiasilocinas.

Los estudios de difracción de rayos X de derivados de dibenzodioxatiasilocinas del tipo **IVSi** muestran que la longitud de enlace S \rightarrow Si se encuentra en el intervalo de la suma de radios covalentes y la suma de radios de van der Waals [$\Sigma r_{COV}(S, Si) = 2.20 \text{ Å}; \Sigma r_{vdW}(S, Si) = 3.90 \text{ Å}$].

El porcentaje de desplazamiento de geometría tetraédrica a bipirámide trigonal ($T_d \rightarrow BPT$) se encuentra en el intervalo de 35 a 54 % cuando la distancia S \rightarrow Si disminuye de 3.292(1) a 2.978(4) Å, con un aumento en el número de coordinación del átomo de silicio de cuatro a cinco (Algunos ejemplos se muestran en las figuras 1.35 y 1.36).

Figura 1.36.Grado de desplazamiento de geometría $T_d \rightarrow BPT$ y *oe*.⁷⁵

La conformación de las dibenzodioxatiasilocinas se determina de la misma manera que para las dibenzodioxatiafosfocinas, es decir cuando la distancia de S \rightarrow Si se acerca más a la $\Sigma r_{CO}v=2.20$ Å, la conformación que adopta es de bote-bote (B-B), y cuando la distancia de S \rightarrow P se acerca más

a la Σr_{Vdw} = 3.90 Å, la conformación adoptada es de bote-silla (B-S).

1.6.3 Hipervalencia en dibenzoelementodioxagermocinas.

Los compuestos del tipo IVGe en donde A = Ge, denominados dibenzodioxatiagermocinas, han sido poco estudiados. La estructura molecular del espirocompuesto dibenzo[d,g][1,3,6,2]-dioxatiagermocina [S(4,6-^tBu₂C₆H₄O)₂]₂Ge (Figura 1.37) muestra al átomo de germanio hexacoordinado, con geometría octaédrica distorsionada. La distancia de enlace S \rightarrow GQ de 2.477 Å es un 11 % más larga que la suma de los radios covalentes [Σr_{COV} (Ge,S)= 2.24 Å]. La molécula pertenece al grupo de simetría C₂, y presenta una conformación *syn* bote-bote con simetría reflexional.⁶⁷ La geometría del átomo de Ge se encuentra en un 84.3 % de carácter octaédrico con un *oe* de 0.463.

H Ge Sm. T

Figura 1.37. Espirocompuesto dibenzo[d,g][1,3,6,2]-dioxatiagermocina.

Se ha informado de la síntesis y caracterización estructural en estado sólido mediante estudios de difracción de rayos X de monocristal del espirocompuesto dibenzo[d,g][1,3,6,2]-dioxaselenagermocina y de 2,2-dimetil-dibenzo[d,g][1,3,6,2]-dioxaselena-germocinay se ha evidenciando una interacción intramolecular transanular entre los átomos de Se y Ge.⁶⁸ Su estructura molecular muestra al átomo de Ge hexacoordinado (Figura 1.38), con geometría octaédrica distorsionada, donde la longitud de enlace Se \rightarrow Ge es de 2.60 Å, la cual es un 10 % más larga que la suma de los radios covalentes [Σr_{C0V} (Se, Ge) = 2.36 Å]. La geometría del átomo de Ge se encuentra en un 83.9 % de carácter octaédrico y un *oe* de 0.489. La conformación de la molécula es *syn* bote-bote con simetría $C_s^{67,68}$

Figura 1.38. Espirocompuesto dibenzo[d,g][1,3,6,2]-dioxaselenagermocina.

La estructura molecular de 2,2-dimetildibenzo[d,g][1,3,6,2]-dioxaselenagermocina (Figura 1.39), muestra al átomo de Ge pentacoordinado, con geometría de bipirámide trigonal, en donde la longitud de enlace Se \rightarrow Ge es de 3.11 Å. la cual es un 31 % más larga que la suma de los radios covalentes [Σr_{cov} (Se, Ge) = 2.36 Å]. La geometría del átomo de Ge se desplaza de tetraédrica a BPT, presentando un porcentaje de 50.3 % y un *oe* de 0.087. La conformación que adopta el anillo de ocho miembros en estado sólido es *syn* B-B.

Se Me-Ge Me

Figura 1.39. Estructura del 2,2-dimetil-dibenzo[d,g][1,3,6,2]-dioxaselenagermocina.

Pastor *et al*^{67,68} proponen que la conformación del anillo de ocho miembros presente en el sistema del tipo **IV** puede ser descrita mediante alguna de las siguientes formas: B-S (simetría C_s), B-B (simetría C_s), BT (simetría C_l) y T (simetría C_2). En la figura 1.40 se muestran las conformaciones que puede adoptar el anillo de ocho miembros.

Figura 1.40. Conformaciones en el sistema dibenzo[d,g][1,3,6,2]-dioxaselenagermocina. 67.68

La estructura molecular del espirocompuesto dibenzo[d,g][1,3,6,2]-ditiafosfagermocina. (Figura 1.41) muestra al átomo de Ge hexacoordinado, con un 90.7 % de carácter octaédrico y un *oe* de 0.645.⁶⁹ La longitud de enlace P \rightarrow Ge de 2.4152(11) Å, esta distancia es un 5.7 % más larga que su suma de los radios covalentes [Σr_{cov} (P, Ge) = 2.28 Å]. La molécula globalmente pertenece al grupo de simetría C_2 , con una conformación de bote torcido.⁶⁹

Figura 1.41. Espirocompuesto dibenzo[d,g][1,3,6,2]-ditiafosfagermocina.

1.6.4 Hipervalencia en dibenzoelementoditioestibocinas.

Los compuestos en donde A = Sb y D = S, O son denominados dibenzoditiaestibocinas, el ligante exocíclico puede ser un halógeno, un ditiofosfato $[S_2P(OR)_2]$ o un ditiocarbamato $[S_2CN(R)_2]$, (Figura 1.42). Estos compuestos han sido ampliamente estudiados en nuestro grupo de investigación.⁷⁰⁻⁷² La síntesis de los compuestos monoclorados se ha llevado a cabo mediante la reacción del correspondiente ligante D(C6H4SH)2 con el SbCl₃; los derivados con bromo y yodo fueron obtenido a través de una reacción de intercambio de halógenos mientras que las dibenzoestibocinas con ligantes ditiolato fueron preparadas mediante la reacción entre el derivado clorado con la correspondiente sal de sodio o potasio del ligante ditiolado.

La estructura molecular de estos compuestos muestra la existencia de interacciones intramoleculares transanulares entre los átomos D y Sb. La distancia de la interacción intramolecular en todas las dibenzoditiaestibocinas es menor a la suma de los radios de van der Waals de los átomos involucrados [$\Sigma r_{vdw}(S, Sb)= 3.92 \text{ Å}$] y [$\Sigma r_{vdw}(O, Sb)= 3.64 \text{ Å}$].⁸⁹

El átomo de antimonio aumenta su número de coordinación de tricoordinado a tetra-o pentacoordinado cuando el ligante exocíclico actúa como mono- (halogenuro) o bidentado (ditiofosfato y dietilditiocarbamato) respectivamente. La geometría que adopta el átomo de antimonio para el caso de los compuestos monohalogenados considerando la interacción intramolecular es de ψ -BPT, y de ψ -BPT monoapicado debido al carácter bidentado de los ligantes 1,1-ditiolato. La conformación que adoptan las dibenzoestibocinas es de bote torcido cuando la distancia de la interacción D \rightarrow Sb se aleja de la suma de los radios covalentes de los átomos involucrados y de bote-bote cuando la distancia de la interacción D \rightarrow Sb se acerca a la suma de los radios covalentes. En la tabla 1.7 se muestran algunas características estructurales de las dibenzoditiaestibocinas.

Compuesto	D	D→Sb (Å)	D→Sb-L [†] (°)	$d(Sb-L_{ax}^{\dagger})$ (Å)	confor- mación	oe ⁵ Sb-L ¹	<i>oe</i> " D→Sb	BPT ^c (%)	Ref
O(C6H4S)2SbCl (IVSb1)	0	2.596(2)	153.22(5)	2.4066(9)	BT	0.947	0.220	69	70
$O(C_6H_4S)_2SbDOF(IVSb2)$	0	2.762(5)	146.3(1)	2.498(2)	BT	0,776	0.128		71
O(C6H4S)2SbS2CNEt2(IVSb3)	0	2.813(3)	147.81(6)	2.473(1)	BT	0.841	0.108		72
S(C ₆ H ₄ S) ₂ SbCl (IVSb4)	S	2.819(6)	155.24(2)	2,4807(6)	BT	0.745	0.274	73	70
S(C ₆ H ₄ S) ₂ SbBr (IVSb5)	S	2.805(1)	155.86(4)	2.6373(6)	BT	0.729	0.287	74	70
S(C ₆ H ₄ S) ₂ Sbl (IVSb6)	S	2.784(2)	158.62(4)	2.8603(6)	BT	0.655	0.307	76	
Moléculas a y b		2.771(2)	158.61(4)	2,8747(6)	B-B	0.682	0.319	77	70
S(C ₆ H ₄ S) ₂ SbS ₂ P(O [*] Pr) ₂ (IVSb7)	S	3.01(1)	150.61(4)	2.510(1)	BT	0.746	0.147		71
S(C6H4S)2SbS2P(OPh)2 (IVSb8)	• S	2.900(1)	150.20(4)	2.577(1)	BT	0.6	0.21		71
S(C ₆ H ₄ S) ₂ SbDOF (IVSb9)	S	2.884(1)	150.57(3)	2.600(1)	BT	0.557	0.221		71
S(C ₆ H ₄ S) ₂ SbS ₂ CNEt ₂ (IVSb10)	S	3.022(1)	150.77(4)	2.510(1)	BT	0,746	0.142		72

^aLa numeración IVSbi indica un compuesto iésimo del tipo IV que contiene antimonio. ^b $oe = 10^{-(1.4)}$, ^{Ad} $Ad = (d_{exp} - \Sigma r_{env})$, [Σr_{env} (S,Sb) = 2.42 Å], [Σr_{eov} (O, Sb) = 2.13 Å], [Σr_{eov} (Sb,Cl) = 2.39 Å], [Σr_{eov} (Sb,Br) = 2.54 Å], [Σr_{eov} (Sb,l) = 2.73 Å].

^cBPT, si D \rightarrow Sb = $\Sigma r_{vdW}(D\rightarrow$ Sb) la geometria tiene carácter de T_d, si D \rightarrow Sb = Σr_{cov} (D \rightarrow Sb) [D = O, S]la geometria tiene carácter de BPT.¹⁹⁻²¹ [$\Sigma r_{cov}(S, Sb) = 2.42 \text{ Å}$], [$(\Sigma r_{vdW}(S, Sb) = 3.92 \text{ Å}$], [$\Sigma r_{cov}(O, Sb) = 2.13 \text{ Å}$], [$\Sigma r_{vdW}(O, Sb) = 3.64 \text{ Å}$].^{7,8}

1.6.5 Dibenzotritiametalocinas (A = metal de transición).

Se ha informado también acerca de la síntesis de dibenzotritiametalocinas con metales de transición (Figura 1.43), estudios que fueron realizados prácticamente en su totalidad por Sellmann *et al.*^{73,87-92}

A = Ni(II), Pt(II), Pd(II), Fe(II) Figura 1.43. Dibenzotritiametalocinas con metales de transición.

Estos estudios han sido dirigidos principalmente hacia algunos aspectos relacionados con la estabilización o coordinación y activación de moléculas pequeñas tales como CO, N₂, H₂, NO, N₃⁻⁻, N₂H₂, N₂H₄ y NH₃ mediante complejos azufrados con metales de transición, para tener una mejor comprensión del mecanismo molecular de enzimas como las deshidrogenasas, hidrogenasas y nitrogenasas. El análisis estructural de rayos X de hidrogenasas de *Desulfovibrio Gigas* muestra que el sitio activo contiene un átomo de níquel rodeado por cuatro donadores del tipo tiolato de la cisteína, dos de los cuales forman puentes con el fragmento de [Fe(CO)(CN)₂] (Figura 1.44).

Las hidrogenasas son enzimas indispensables para el metabolismo de energía biológica a través de la catálisis de la reacción reversible de óxido-reducción $(2H^+ + 2e^- \leftrightarrow H_2)$.^{73,87-89}

Figura 1.44. Estructura esquemática del sitio activo de hidrogenasa D. Gigas en su forma oxidada.

Las dibenzotritiametalocinas que contienen metales de transición y diferentes ligantes exocíclicos han sido caracterizadas estructuralmente por difracción de rayos X de monocristal. En estos compuestos el átomo metálico aceptor A con configuración d⁸ [A = Ni (II), Pd(II) y Pt(II)] se encuentra tetracoordinado, con una geometría de coordinación ligeramente alejada de una situación plana, basado esto último en la desviación de los valores de los ángulos S₁-A-S3 con respecto al valor de 180° en una geometría plana. Estos compuestos presentan dos conjuntos de distancias entre el centro metálico A y los átomos de azufre del ligante tridentado: Un primer conjunto es el de las distancias entre A y los azufres divalentes S₁ y S₃ del tipo tiolato, y el segundo conjunto de distancias es el que considera a la distancia transanular entre A y el azufre tricoordinado S₃ del tipo tioéter (Figura 1.45 y Tabla 1.8).

Figura 1.45. Numeración empleada en dibenzotritiametalocinas con metales de transición.

Metal (A)	L	$A\text{-}S_1(\text{\AA})$	A-S ₃ (Å)	A-S ₂ (Å)	Ref.
Ni(II)	NHP ⁿ -Pr ₃	2.179(2)	2.184(2)	2.116(2)	89
Pd(II)	NHP ⁿ -Pr ₃	2.294(10)	2.304(10)	2.217(9)	89
Pt(II)	NHP ⁿ -Pr ₃	2.295(5)	2.302(5)	2.208(4)	89
Ni(II)	PMe ₃	2.162(2)	2.148(2)	2.138(2)	73
Pt(II)	PPh ₃	2.312(1)	2.312(1)	2.287(1)	73
Ni(II)	CN	2.162(1)	2.158(1)	2.124(1)	73
Ni(II)	PPh ₃	2.175(2)	2.158(2)	2.138(2)	87
Ni(II)	Cl	2.170(1)	2.195(2)	2.114(2)	87
Pd(II)	SC(CH ₃) ₃	2.291(1)	2.310(1)	2.260(2)	87

Tabla 1.8. Distancias de enlace S-A (Å) en dibenzotritiametalocinas con metales de transición.

Es notable el comportamiento que manifiestan las distancias entre A y S₂ tricoordinado (tioéter), las cuales son más cortas que las distancias A-S dicoordinado (tiolato); estas diferencias han sido racionalizadas en función de la topología y rigidez del sistema $S(C_6H_4S)2\sim$ en los complejos para formar anillos de cinco miembros.^{73,87-90}

Cuando el centro metálico es Fe(II), éste se encuentra hexacoordinado con una geometría de coordinación octaédrica distorsionada dando lugar a complejos diamagnéticos.^{89,90}(Figura 1.46)

Figura 1.46. Dibenzotritiametalocinas con Fe(II).

La distancia de enlace Fe-S (tioéter) encontrada para el compuesto a es de 2.280(2) Å, y es ligeramente más corta que la distancia de enlace Fe-S(tiolato) {2.302(2) y 2.313(2) Å }. Lo mismo sucede para el compuesto **b** {Fe-S(tioéter) 2.254(1) Å, y Fe-S(tiolato) 2.303(1) y 2.317(1) Å}

A partir de estos antecedentes se presentan los objetivos que se plantearon para el desarrollo del presente trabajo de investigación.

Objetivos

El objetivo general del presente trabajo de tesis es el estudio estructural de compuesto del tipo IV que contienen como átomo aceptor un elemento del grupo 14 [Ge(IV), Sn(IV), Pb(IV)] o 15 [As(III)] y como átomo donador uno del grupo 16 (O, S) para comprender y racionalizar los cambios en el número de coordinación del átomo aceptor y las variaciones conformacionales derivadas de este aumento ocasionados por la presencia de interacciones intramoleculares transanulares $D \rightarrow A$.

Del objetivo general se desprenden varios objetivos particulares que se exponen a continuación:

Sintetizar y caracterizar estructuralmente dibenzometalocinas mono- y dihalogenadas del tipo IV donde A = Ge(IV), Sn(IV), Pb(IV) y As(III) a partir de los ligantes bis-(2mercaptofenil)tioéter S(C₆H₄SH)₂ y bis-(2-mercaptofenil)éter O(C₆H₄SH)₂

- Sintetizar y caracterizar estructuralmente derivados de las dibenzometalocinas con gigantes diferentes a halógenos para evaluar el efecto que tienen estos ligantes en la interacción intramolecular transanular $D \rightarrow A$.
- ► Analizar mediante estudios de difracción de rayos X de monocristal la posible interacción intramolecular transanular D → A y su variación de acuerdo a la naturaleza del ligante exocíclico unido al átomo aceptor A [A =Ge(IV), Sn(IV), £b(IV), As(III)].
- Estudiar la posible modificación en la interacción $D \rightarrow A$ mediante la introducción de gigantes potencialmente bidentados hacia el átomo aceptor A.
- ► Realizar estudios de estructura electrónica molecular con el fin de entender la naturaleza de la interacción D → A que pueda estar presente en las dibenzometalocinas sintetizadas.

Bibliografía

- ¹ J. I. Musher, Angew. Chem. Int. Edil., 1969, 8, 54.
- ² K. Y. Akiba, *Chemistry of Hypervalent Compounds*, Cap. I, (Ed. K. Y. Akiba), Wiley-VCH, Weinheim, **1999.**
- ³ S. Patai, *The Chemistry of Organic Germanium, Tin and Lead Compounds*. Volumen 2, (Ed. Zvi Rappaport), John Wiley & Sons, Ltd, **2002.**
- ⁴ O. J. Curnow, J. Chem. Ed., **1998**, 75, 910.
- ⁵ a).- N. W. Alcock, *Adv. Inorg. Chem. Radiochem.*, **1972**, 75. 1. b).- N. W. Alcock, *Bonding and Structure, Structural Principies in Inorganic and Organic Chemistry*, (Ed. Ellis Horwood), Primera Edición, Gran Bretaña, **1999.** c).- J. Starbuck, N. C. Norman, A. Guy Orpen, *New J. Chem.*, **1999**, *23*, 968.
- ⁶ R. J. Gillespie, B. Silvi, Coord. Chem. Rev. 2002, 53, 233.
- ⁷ W. W. Porterfield, *Inorganic Chemistry: A Unified Approach*, Segunda Edición, Academic Press, Inc. USA **1993**, p. 214.
- ⁸ A. Bondi, J. Phys. Chem., **1964**, 68, 441.
- a).-M. Iwaoka, H. Komatsu, T. Katsuda, S. Tomoda, J. Am. Chem. Soc, **2004**, 726, 5309. b).- N. Kocher, J. Henn, B. Gostevskii, D. Kost, I. Kalikhman, B. Engels, D. Stalke, J. Am. Chem. Soc, **2004**, 126, 5563.
- ^D J. A. Dobado, H. Martínez García, J. Molina Molina, M. R. Sundberg, J. Am. Chem. Soc, **1999**, 727, 3156.
- ¹ R. Ponec, X. Girones, J. Phys. Chem. A, 2002,106, 9506.
- ² K. Y. Akiba, Y. Moriyama, M. Mizozoe, H. Inohara, T. Nishii, Y. Yamamoto, M. Minoura,
- D.Hashizume, F. Iwasaki, N. Takagi, K. Ishimura, S. Nagase, J. Am. Chem. Soc, 2005, 727, 5893.
- ^B P. Steenwinkel, J T. B. H. Jastrzebski, B. J. Deelman, D. M. Grove, H. Kooijman, N. Veldman, W. J. J. Smeets, A. L. Spek, G. van Koten, *Organometaüics*, 1997, *16*, 5486.
- ⁴ U. Kolb, M. Draeger, B. Jousseaume, Organometallics, **1991**, 10, 2737.
- ⁵ U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics, **1994**, 13, 4413.
- ⁶ U. Kolb, M. Beuter, M. Draeger, *Inorg. Chem.*, **1994**, *33*, 4522.
- ^v H. B. Bürgi, *Inorg. Chem.*, **1973**, 72, 2321.
- ^B D. Britton, J. D. Dunitz, J. Am. Chem. Soc. **1981**,103, 2971.
- ⁹ A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1999**, *38*, 3369.
- ¹⁰ N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1998**, *37*, 3862.
- ^a D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082.
- ² M. P. Murchie, J. P. Johnson, J. Passmore, G. W. Sutherland, M. Tajik, T. K. Whidden, P. S. White, F. Grein, *Inorg. Chem.*, **1992**, *31*, 273.
- ² S. Brownridge, T. Stanley Cameron, H. Du, C. Knapp, R. Koppe, J. Passmore, J. Mikko Rautiainen, H. Schonockel, *Inorg. Chem.*, **2005**, *44*, 1660.
- ²⁴ L. Pauling, *The Nature of the Chemical Bond*, Tercera Edición, Cornell University, Ithaca, 1960, Cap. 7.
- ²⁵ http://www.chem.qmw.ac.uk/iupac/hetero/HW.html
- ²⁶ K. Jurkschat, J. Schilling, C. Mugge, A. Tzschach, J. M. Piret, M.van Meerssche, M. Gielen, R. Willem, *Organometallics*, **1988**, **7**, 38.
- ⁷ C. Wynants, G. Van Birnst, C. Mugge, K. Jurkschat, A. Tzschach, H. Pepermans, M. Gielen, R. Willem, *Organometallics*, **1985**, *4*, 1906.
- ²⁸ R. Cea Olivares, V. García Montalvo, M. Moya Cabrera, *Coord, Chem. Rev.*, 2005, *249*, 859. Y las referencias ahí citadas.
- ¹⁹ M. Beuter, U. Kolb, A. Zickgraf, E. Brau, M. Bletz, M. Draeger, *Polyhedron*, **1997**, *16*, 4005.
- ³⁰ S. S. Karlov, E. Kh. Yajuboca, E. V. Gauchenova, A. A. Selina, A. V. Churakov, J. A. K. Howard, D.
- A. Tyurin, J. Lorberth, G. S. Zaitseva, Z. Naturforsch, 2003, 58b, 1165.
- ³ S. S. Karlov, E. Kh. Lermontova, M. V. Zabalov, A. A. Selina, A. V. Churakov, J. A. K. Howard, M. Y. Antipin, G. S. Zaitseva, *Inorg. Chem.*, **2005**, *44*, 4881.

- ² E. Lukevics, S. Belyakov, O. Pudova, J. Organomet. Chem., 1996, 523, 41.
- ³ H. C. Chiang, S. M. Lin, C. H. Ueng, Acta Crystallogr., Sect. C. Cryst. Struct. Commun., 1992, 48, 991.
- ³⁴ M. Draeger, Z. anorg. Allg. Chem. 1976, 423, 53.
- ³⁵a).-M. Draeger, Chem. Ber., 1975, 108, 1723. b).- M. Draeger, L. Ross, Chem. Ber., 1975, 108, 1712.
- ³⁶ D. H. Chen, H. C. Chiang, C. H. Ueng, *Inorg. Chim. Acta*, **1993**, 208, 99.
- ⁹ S. N. Gurkova, A. I. Gusev, N. V. Alekseev, T. K. Gar, N. A. Viktorov, Zh. Strukt. Khim. (Russ.) (J. Struct. Chem.), 1990. 31, 158.
- ⁸ C. RuYu, L. Lun Zu, Z. Zhong Biao, W. Hong Gen, W. Ru Ji, J. Huaxue. Chin. Chinese J. Struct. Chem., 1996,75,93.
- ⁹ O. S. Jung, J. H. Jeong, Y. S. Sohn, Organometallics, 1991, 10, 761.
- ⁴ M. Draeger, J. Organomet. Chem., **1983**, 251, 209.
- ⁴ R. G. Swisher, R. R. Holmes, Organometallics, 1984, 3, 365.
- ² R. Willem, M. Gielen, J. M. Piret, M. V. Meerssche, K. Jurkschat, A. Tzschach, J. Organomet. Chem., 1984,277,335.
- ⁴ B. M. Schmidt, M. Draeger, K. Jurkschat, J. Organomet. Chem., 1991, 410, 43.
- ⁴ a).- H. Follne, *Monatsh. Chem.*, 1972, *103*, 1438. b).- R. Fiedler, H. Follner, *Monatsh. Chem*, 1977, 705,319.
- ⁴⁵ M. Draeger, R. Engler, Z Anorg. Allg. Chem., **1975**, 413, 229.
- ⁴⁶ M. Draeger, Z Naturforsch., B: Chem.Sci., **1985**, 40, **1511**.
- ⁴⁷ M. Draeger, *Chem. Ber.*, **1981,** *114*, 2051.
- ⁴ M. Draeger, Z Naturforsch., B: Chem. Sci., **1981**, 36, 437.
- ^{*} P. García y García, A. M. Cotero Villegas, M. López Cardoso, V. García Montalvo, R. A. Toscano, A. Gómez Ortiz, R. Ferrari Zijlstra, R. Cea Olivares, *J. Organomet. Chem.*, **1999**, *587*, 215.
- ⁹ P. García y García, R. Cruz Almanza, R. A. Toscano, R. Cea Olivares, *J. Organomet. Chem.*, **2000**, *598*, 160.
- ⁵ R. Cea Olivares, V. Lomeli, S. H. Ortega, I. Haiduc, *Polyhedron*, **1995**, *14*, *1A1*.
- ¹² M. Draeger, R. Engler, *Chem. Ber.*, **1975**, *108*, 17.
- ⁵ M. Draeger, H. J. Guttmann, J. Organomet. Chem., **1981**, 272, 171.
- ⁴ M. Draeger, Z Anorg. Allg. Chem., **1985**, 527, 169.
- ⁵⁵ J. Jun Zhang, W. Xin Du, S. Min Hu, S. Qing Xia, L. Sheng Wang, X. Tao Wu, *Inorg. Chem. Commun.*, **2003**, *6*, 387.
- ⁵⁶ M. Draeger, N. Kleiner, Z Anorg. Allg. Chem., 1985, 522, 48.
- ⁵⁷ M. Draeger, Z Anorg. Allg. Chem., **1975**, 411, 79.
- ⁸ M. A. Muñoz Hernández, R. Cea Olivares, S. Hernández Ortega, Inorg. Chim. Acta, 1996, 253, 31.
- ^{>9} R. Cea Olivares, M. R. Estrada, G. Espinosa-Pérez, I. Haiduc, P. García y García, M. López Cardoso, M. López Vaca, *Main Group Chem.*, **1995**, 159..
- ^{>0} M. A. Muñoz Hernández, R. Cea Olivares, G. Espinosa Pérez, S. Hernández Ortega, J. Chem. Soc, Dalton Trans., 1996, 413 5.
- ⁶ P. García y García, R. Cruz Almanza, S. Hernández Ortega, R. Cea Olivares, 7?<?v. *Roum. Chim.*, **2002**, *47*, 1047.
- [®] N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, Angew. Chem., Int. Ecl, 1994, 33, 1267.
- ⁶ H. Muller, A. Holzmann, W. Hinrichs, G. Klar, Z Naturforsch, TeilB, 1982, 37, 341.
- ⁶⁴ C. R. Cornman, K. M. Geiser Bush, J. W. Kampf, *Inorg. Chem.*, **1999**, *38*, 4303.
- ⁶ P. Berges, W. Hinrichs, A. Holzmann, J. Wiese, G. Klar, J. Chem. Res., 1986, 10, 201.
- ⁶⁶ R. R. Holmes, Chem Rev., **1996**, 96, 927.
- ⁶ S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H. F. Hsu, Inorg. Chem., 1997, 36, 5966.
- ⁶⁶ T. Thompson, S. D. Pastor, G. Rihs, *Inorg. Chem.*, **1999**, *38*, 4163.
- [®] M. Y. Chiang, J. W. Lin, W. F. Zegn, Acta Cryst., 2005, C61, m84.
- ¹⁰ J. G. Alvarado Rodríguez, N. Andrade López, S. González Montiel, G. Merino, A. Vela, *Eur. J. Inorg. Chem.* **2003**, 3554.

S. González Montiel, Tesis de Maestría, *Estudio de la interacción intramolecular trans-anular D*—*Sb (D = O, S), UAEH, **Pachuca**, Hidalgo, México, **2004**.

² J. G. Alvarado Rodríguez, S. González Montiel, L. B. López Feliciano, N. Andrade López, *Polyhedron*, **2007**, en prensa.

- ⁷⁵ D. Sellmann, D. Haussinger, F. W. Heinemann, *Eur. J. Inorg. Chem.*, 1999, 1715.
- ¹ R. M. L. Mercado, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Organometallics*, 1999, 18, 906.
- ⁷⁵ R. O. Day, T. K. Prakasha, R. R. Holmes, H. Eckert, Organometallics, **1994**, *13*, 1285.
- ¹⁶ N. V. Timosheva, T. K. Prakasha, A. Chandrasekaran, R. O. Day, R. R. Holmes, *inorg.Chem.*, 1996, *35*, 3614.
- ⁷⁷ T. K. Prakasha, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1994**, *33*, 93.
- ⁸ P. Sood, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, 1998, 37, 3747.
- ^p D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082.
- ⁸⁰ R. R. Holmes, Acc. Chem. Res., **1998**, 31. 535.
- ⁸ P. Sood, A. Chandrasekaran, T. K Praskasha, R. O. Day, R. R. Holmes, *Inorg. Chem*, **1997**, *36*, 5730.
- [®] T. K. Prakassha, R. O. Day, R. R. Holmes, *Phosphorus, Sulfur, and Silicon*, **1995**,100, 195.
- ⁸ P. Sood, A. Chandrasekaran, R. R. Holmes, *Inorg. Chem.*, **1998**, *37*, 459.
- ⁸⁴ T. K. Prakasha, Robería O. Day y Robert R. Holmes Inorg. Chem., **1992**, 31, 1913.
- ⁸ R. O. Day, T. K. Prakasha, R. R. Ho, Imes, *Phosphorus, Sulfur, and Silicon*, **1995**, 100, 211.
- ⁸⁶ T. K. Prakasha, S. Srinivasan, A. Chandrasekaran, R. O. Day, R. R. Holmes, J. Am. Chem .Soc, **1995**, 117, 10003.
- ⁸⁷ D. Sellmann, F. Geipel, F. W. Heinemann, Eur. J. Inorg. Chem., 2000, 271.
- ⁸ D. Sellmann, F. Geipel, F. W. Heinemann, Eur. J. Inorg. Chem., 2000, 59.
- [®] D. Sellmann, F. Geipel, F. W. Heinemann, *Chem. Eur. J.*, **2000**, 4279.
- ⁹⁰ D. Sellmann, F. Geipel, F. Lauderbach, F. W. Heinemann, Angew. Chem. Int. Ed., 2002, 41, 632.
- ⁹ D. Sellmann, F. Geipel, F. W. Heinemann, Chem. Eur. J., 2002, 8, 958.
- ⁹ D. Sellmann, R. Prakash, F. W. Heinemann, *Eur. J. Inorg. Chem.*, **2004**, 1847.

Capítulo 2 Estudio estructural de dibenzogermocinas

En el presente capítulo se describe la síntesis, caracterización fisicoquímica, el estudio estructural y el estudio de estructura electrónica de cinco dibenzogermocinas (Figura 2.1).

	D	L^1	L^2	Nombre
1	S	C1	Ph	2-cloro-2-fenildibenzo[d,g][1,3,6,2]-tritiagermocina
2	S	Br	Ph	2-bromo-2-fenildibenzo[d,g][1,3,6,2]-tritiagermocina
3	S	Ph	Ph	2,2-difenildibenzo[d,g][1,3,6,2]-tritiagermocina
4	Ο	C1	Et	5-cloro-5-etildibenzo[b,g][1,4,6,5]-oxaditiagermocina
5	0	Ph	Ph	5,5-difenildibenzo[b,g][1,4,6,5]-oxaditiagermocina

Figura 2.1. Dibenzogermocinas 1-5.

2.1 Antecedentes.

El estudio del aumento del número de coordinación del átomo de germanio a través de la existencia de una interacción intramolecular con un átomo donador (D \rightarrow Ge) ha sido ampliamente documentado en los germocanos **IIIGe** (Para más detalles ver sección 1.5.1). En contraste, sólo pocas dibenzogermocinas **IVGe**, han sido estudiadas (Figura 2.2 y detalles en la sección 1.6.3) con átomos donadores tan diversos como D = N, P, O, S Se. La caracterización estructural mediante estudios de difracción de rayos X de monocristal de estos compuestos ha mostrado la existencia de una interacción intramolecular transanular entre los átomos D y Ge. Debido a la presencia de estas interacciones D \rightarrow Ge en los germanocanos y en las dibenzogermocinas el átomo de germanio aumenta su número de coordinación de tetracoordinado a penta- o hexacoordinado.¹⁻¹⁵

Figura 2.2. Germanocanos IIIGe y dibenzogermocinas IVGe.

A continuación se analizan y discuten los resultados obtenidos en el presente trabajo con respecto al aumento del número de coordinación del átomo de germanio presente en las dibenzogermocinas.

2.2 Resultados y discusión.

2.2.1 Síntesis de los compuestos 1-5.

Los ligantes $S(C_6H_4SH)_2^{16}$ y $O(C_6H_4SH)_2^{17}$ fueron sintetizados de acuerdo a los métodos reportados. La reacción del correspondiente organilgermanio(IV) en THF a 0°C con la sal dilitiada del ligante, generada *in situ* de la reacción del ditiol [$S(C_6H_4SH)_2$ y $O(C_6H_4SH)_2$] y dos equivalentes de ⁿ⁻BuLi producen el correspondiente complejo de Ge(IV). La reacción de $S(C_6H_4SLi)_2$ con PhGeCl₃ y Ph₂GeCl₂ da como resultado $S(C_6H_4S)_2$ GePhCl (1) y $S(C_6H_4S)_2$ GePh₂ (3), respectivamente. El complejo $S(C_6H_4S)_2$ GePhBr (2) fue sintetizado de la reacción de 1 con un exceso de KBr a reflujo de una mezcla de HBr/benceno. produciéndolo como cristales incoloros. La reacción de $O(C_6H_4SLi)_2$ con EtGeCh y Ph₂GeCl₂ produce a $O(C_6H_4S)_2$ GeEtCl (4) y $O(C_6H_4S)_2$ GePh₂ (5), respectivamente (Ver esquema 2.1 y detalles en la parte experimental).

Esquema 2.1. Síntesis de los dibenzogermocinas 1-5.

Los compuestos 1 - 5 son estables al aire, solubles en benceno, tolueno, diclorometano y cloroformo e insolubles en pentano, hexano e isopropanol.

También se realizaron las siguientes reacciones en las cuales no se logró obtener los compuestos deseados, lo anterior se basa en los estudios realizados en solución de resonancia magnética nuclear de ¹H y ¹³C ver esquema 2.2.

Esquema 2.2. Reacciones no exitosas.

2.2.2 Espectrometría de masas de 1—5.

Los espectros EM-FAB+ para **1**, **2**, **3** y **5** y el espectro EM-EI para **4** muestran un fragmento con baja intensidad y con la relación isotópica esperada para el ion molecular $(D(C_6H_4S)_2GeL^1L^2)^{++}(M^{++})$. El pico base corresponde al fragmento $M^{++} - V[V = Cl(1), Br(2), Ph(3 y 5), Et(4)]$ y es asignado al fragmento $D(C_6H_4S)_2GeL[L^2 = Ph(1, 2, 3 y 5); L_2 = Cl(4)]$. En todos los espectros se observa un pico que corresponde al fragmento $D(C_6H_4)$?S; [D = S (1, 2, 3); m/z = 216; O (4, 5) m/z = 200]. Para el caso de las dibenzogermocinas difeniladas **3** y **5** se observa un pico en 229 m/z el cual es asignado al fragmento protonado de GePh.₂. Los demás picos presentes en los espectros no se lograron asignar, debido a que se presentan conjuntos más complejos de baja intensidad (En el esquema 2.3 se muestran algunos fragmentos de las dibenzogermocinas 1-5 y en la figura 2.3 se muestra un espectro de masas que es representativo para la dibenzogermocinas y corresponde al compuesto 5).

Esquema 2.3. Fragmentación de las dibenzogermocinas 1-5.

Figura 2.3. Espectro de masas (EM-FAB+) del compuesto **5** en matriz de NBA

2.2.3 Espectroscopia de Resonancia Magnética Nuclear.

2.2.3.1 Resonancia Magnética Nuclear de ¹H de los complejos 1-5.

Los espectros de RMN de ¹H de los compuestos 1 - 5 se obtuvieron en soluciones de CDCI₃ a temperatura ambiente y los desplazamientos químicos son relativos al TMS. Las asignaciones de todos los complejos fueron hechas con ayuda de experimentos en dos dimensiones heteronuclear y homonuclear (HETCOR, COLOC y COSY).

Los espectros de RMN de ¹H NMR de los complejos **1**, **2**, **3** y **5** muestran seis grupos de señales de las cuales cuatro señales presentan un patrón ABCD típico para anillos de benceno orto-sustituidos y dos señales para los grupos fenilo unidos al átomo de germanio. Para **4** se observan además de las cuatro señales del anillo orto-sustituido, dos grupos de señales a frecuencias bajas que corresponden al grupo etilo. En solución las dos mitades DC_6H_4SGe son equivalentes (Figura 2.4). En los complejos **1** - **5**, el protón H-1 es desplazado a frecuencias más altas con respecto a los ligantes libres. Para **4** y **5** el protón *orto* H-4 también se ha desplazado a frecuencias altas con respecto al ligante libre.^{16,17} Los datos para los ligantes libres y para los complejos 1-5 se muestran en la tabla 2.1. Las figuras 2.5 y 2.6 ilustran el espectro de RMN de ¹H y el espectro en dos dimensiones homonuclear COSY [¹H-¹H] para el compuesto 1, que es representativo para las dibenzogermocinas.

Figura 2.4. Numeración empleada para los protones de los compuestos 1 - 5 en la RMN de ¹H en los compuestos 1 - 5.

Tabla 2.1. RMN de ¹H desplazamiento químico (δ en ppm) para **1** - **5** en CDCl₃ a temperatura ambiente.

				ii i i i i i i i i i i i i i i i i i i						
	D	L^1	H-1	H-2	H-3	H-4	H-5	H-6	H-7	SH
D(C ₆ H ₄ SH) ₂	S	-	7.45-7.35	7.25-7.0	7.25-7.0	7.25-7.0	-	-	-	4.10
$D(C_6H_4SH)_2$	Ο	-	7.09	7.04	7.36	6.82	-	-	-	3.90
1	S	Cl	7.65	7.27	7.16	7.44	7.81	7.40	7.40	-
2	S	Br	7.65	7.28	7.16	7.44	7.78	7.39	7.39	-
3	S	Ph	7.66	7.13	7.18	7.44	7.63	7.34	7.34	-
4	Ο	Cl	7.53	7.23	7.15	7.13	1.80	1.18	-	-
5	0	Ph	7.56	7.09	7.04	6.85	7.65	7.32	7.32	-

Figura 2.5. Espectro de RMN de ¹H del compuesto 1 en CDCl₃ a temperatura ambiente.

a temperatura ambiente.

2.2.3.2 Resonancia Magnética Nuclear de 13 C de los complejos 1—5.

El espectro de RMN de ${}^{13}C{}^{1}H$ para los complejos 1-3 y 5 muestra diez señales en la región aromática. Para 4 el grupo etilo es observado en 23.1 y 8.3 ppm. La tabla 2.2 muestra los valores del desplazamiento químico (δ) encontrados para los compuestos 1-5 de acuerdo a figura 2.7. En los complejos 1-5 los valores obtenidos muestran un cambio del δ con respecto a los reactivos de partida (ligante libre y cloruros de organogermanio), muestran que el carbono ipso C-4a y el carbono C-4 se desplazan a frecuencias más altas; los espectros para los complejos 1-3 presentan el aumento más grande en el $\Delta \delta$. El $\Delta \delta$ para C-4a y C-4 en 1 es de 8.2 y 4.0 ppm; para 2 es de 8.2 y 4.1 ppm; para 3 es de 7.3 y 4.7 ppm; para 4 es de 0.6 y 1.6 ppm y para 5 es de 2.7 y 2.0 ppm, respectivamente. Para los compuestos 1, 2, 3 y 5 el carbono ipso C-5a se encuentra desplazado a frecuencias más altas que en el Ph₂GeCl₂ (134.5 ppm en CDC1₃). El mayor $\Delta \delta$ del carbono *ipso* C-5a lo presentan los compuestos 1 y 2 con valores de 6.9 y 7.4 ppm, respectivamente; en 3 y 5 se encuentra el menor AS para el carbono *ipso* C-5a (3.7 ppm en 3 y 1.9 ppm en 5). Los datos obtenidos de acuerdo al $\Delta \delta$ del carbono *ipso* C-5a sugieren la existencia de una interacción intramolecular transanular $D \rightarrow Ge$ en solución para 1 y 2, y para 3 y 5 la interacción intramolecular transanular $D \rightarrow Ge$ en solución es muy débil o no está presente. La asignación de los carbonos cuaternarios se realizó con ayuda de experimentos APT. En la figuras 2.8 y 2.9 se ilustra el espectro de RMN de ¹³C y el espectro en dos dimensiones heteronuclear HETCOR $\begin{bmatrix} {}^{13}C - {}^{1}H \end{bmatrix}$ para el compuesto 1, el cual es representativo para las dibenzogermocinas.

Figura 2.7. Numeración empleada para RMN de ¹³C en los compuestos 1-5.

					a comp							
Compuesto	D	L^1	C-1	C-2	C-3	C-4	C-la	C-4a	C-5	C-5a	C-6	C-7
$D(C_6H_4SH)_2$	S	-	132.4	128.3	126.6	130.2	135.0	132.5	-	-	-	-
$D(C_6H_4SH)_2$	0	-	126.7	124.5	130.2	118.6	123.7	152.1	-	-	-	-
Ph2GeCl2	-	-	-	-	-	-	-	-	132.9	134.5	129.3	132.1
1	S	Cl	131.2	129.9	127.5	134.2	132.3	140.7	131.2	141.4	128.9	130.9
2	S	Br	131.2	129.9	127.5	134.3	132.3	140.7	131.1	141.9	128.9	132.1
3	S	Ph	134.3	127.4	128.3	134.9	137.4	139.8	133.2	138.2	128.5	130.0
4	Ο	C1	132.6	127.7	125.8	120.2	126.2	152.7	23.1	-	8.3	-
5	Ο	Ph	133.7	127.5	124.6	120.6	126.6	154.8	133.6	136.4	128.4	130.1

Tabla 2.2. RMN de ${}^{13}C{}^{1}H$ desplazamiento químico (δ en ppm) para 1-5 en CDCl₃ a temperatura ambiente.

Figura 2.8. Espectro de RMN de ¹³C del compuesto 1 en CDCl₃ a temperatura ambiente.

Figura 2.9. Espectro heteronuclear en dos dimensiones HETCOR [1 H - 13 C] del compuesto 1 en CDCl₃ a temperatura ambiente.

2.2.4 Estudios de difracción de rayos X de monocristal de los complejos 1-5.

Las estructuras cristalinas y moleculares en estado sólido de los complejos 1-5 fueron determinadas por difracción de rayos X de monocristal. Los datos cristalográficos correspondientes a la estructura para los compuestos **1** - **5** se muestran en la tabla 2.3.

Tabla 2.3. Datos cristalográficos correspondientes a las estructuras de los complejos 1-5. Complejo 2 3 4 5 1 Fórmula C₁₈H₁₃ClGeS₃ C18H13BrGeS3 C24H18GeS3 C14H13ClGeOS2 C24H18GeOS2 475.15 M g/mol 433.50 477.96 369.40 460.24 0.6×0.13×0.08 0.5×0.3×0.13 Tamaño (mm) 0.6×0.2×0.1 0.12×0.26×0.60 0.17×0.23×0.48 Sistema Monoclínico Triclínico Monoclínico Monoclínico Triclínico cristalino Grupo P2(1)/c P-1 P2(1)/nP2(1)/n P-1 espacial $\rho_{\text{cale}} \,(\text{Mg m}^{-3})$ 1.592 1.712 1.440 1.593 1.441 4 2 4 4 2 Ζ 9.7904(6) a (Å) 8.9753(9) 10.8082(9)10.0723(9)9.3682(8) b (Å) 10.2618(7) 9.8359(10) 14.6260(13) 11.3005(10)9.3892(8) c (Å) 13.9608(13) 18.2961(12) 12.0830(13) 13.8500(13) 12.3758(11) α (deg) 90 79.655(2) 90 90 85.188(2) β (deg) 100.305(2)72.417(3) 96.755(2) 102.297(2) 83.538(2) 90 γ (deg) 66.041(2)90 90 78.649(2) $V(Å^3)$ 1808.5(2)927.25(17) 2191.6(3) 1540.3(2)1058.37(16) μ (mm⁻¹) 2.183 4.139 1.691 2.421 1.656 F(000) 744 872 472 968 468 0.909 GooF 0.963 0.8110.837 0.930 Corrección SADABS SADABS SADABS SADABS SADABS absorción Reflexiones 11696 6117 14261 10798 7098 colectadas Reflexiones 3540 3624 4296 3362 4167 únicas, Rint 0.0467 0.0304 0.0568 0.0480 0.0289 R1, wR2 0.0357. 0.0440. 0.0399. 0.0426, 0.0450, $[l \ge 2\sigma(l)]$ 0.0794 0.1144 0.0771 0.0892 0.0960 R1. wR2 0.0566, 0.0785. 0.0800. 0.0842. 0.0770. (todos los 0.0851 0.1249 0.0859 0.0991 0.1168 datos) Final $\Delta \rho$, max/min 0.715/-0.427 0.592/-0.790 0.496/-0.268 0.646/-0.322 0.524/-0.260 (e Å⁻³)

A continuación se analizan las estructuras cristalinas de cada uno de los complejos sintetizados en función de parámetros geométricos tales como distancias de enlace (Å).

2.2.4.1 Estructura cristalina de los compuestos 1 - 5

Las celdas unitarias de los compuestos **1-5** no presentan interacciones intermoleculares menores a la suma de los radios de van der Waals entre átomos no hidrogenoides lo cual indica que los complejos **1-5** son esencialmente monoméricos (Ver figuras 2.10-2.14).

Figura 2.11. Celda unitaria del complejo S(C₆H₄S)₂GePhBr, 2.

Figura 2.12. Celda unitaria del complejo S(C₆H₄S)₂GePh₂, 3.

Figura 2.13. Celda unitaria del complejo O(C₆H₄S)₂GeEtCl, 4.

Figura 2.14. Celda unitaria del complejo O(C₆H₄S)₂GePh₂, 5.

2.2.4.2 Estructura molecular de los compuestos 1-5.

La figura 2.15 ilustra la estructura molecular de los compuestos **1-5**, señalando la numeración empleada. La tabla 2.4 presenta los valores de las distancias (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los complejos **1-5**.

Compleie	1	2	2	4	5
Complejo	1		3	4	
D	S	S	S	0	0
L	CI1	Br1	C19	CI1	C19
L ²	C13	C13	C13	C13	C13
D→Ge1	2.834(1)	2.782(2)	3.280(1)	2.656(3)	2.872(3)
Ge1-S1	2.236(1)	2.228(2)	2.235(1)	2.231(1)	2.229(1)
Ge1-S2	2.228(1)	2.216(2)	2.255(1)	2.221(1)	2.239(1)
Ge1-L ¹	2.233(1)	2.401(1)	1.959(3)	2.187(1)	1.938(4)
Ge1-L ²	1.941(3)	1.943(5)	1.942(4)	1.943(4)	1.954(4)
D→Ge1-L ¹	169.57(4)	175.99(4)	168.3(1)	166.97(6)	169.5(1)
S1-Ge1-S2	115.35(4)	114.42(7)	110.58(4)	115.47(5)	111.65(5)
S1-Ge1-L ²	120.5(1)	120.89(2)	112.3(1)	115.0(1)	113.8(1)
S2-Ge1-L ²	119.0(1)	120.2(2)	113.7(1)	116.7(1)	111.6(1)
L ₁ -Ge1-L ²	101.6(1)	98.6(2)	113.6(1)	108.8(2)	113.4(2)
S1-Ge1-L ¹	98.47(4)	97.03(5)	100.6(1)	98.6(1)	100.8(1)
S2-Ge1-L1	92.46(4)	95.59(5)	105.1(1)	98.86(5)	104.8(1)
C7-D-C6-C1	127.6(3)	125.3(4)	61.0(3)	142.9(3)	87.9(4)
C6-D-C7-C12	-74.4(3)	-77.5(5)	-122.9(3)	-87.4(4)	-137.2(4)
S2-Ge1-S1-C1	-31.1(1)	-40.3(2)	-97.7(1)	-33.0(1)	-94.0(1)
S1-Ge1-S2-C12	99.1(1)	100.7(2)	11.7(1)	98.6(1)	31.9(2)

Tabla 2.4. Distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los compuestos 1–5.

Figura 2.15. Estructura molecular de los compuestos 1-5 (ORTEP al 50% de probabilidad).

La estructura molecular de los compuestos **1-5** muestra que las distancias Ge-S(tiolato) son semejantes con las informadas para otros heterociclos de ocho miembros y algunos compuestos que en su estructura contienen enlaces germanio-azufre: [2.191(3) Å en **IIIGe8**,⁶ 2.154(4)-2.217(4) Å en **HIGe7**,⁵ 2.216(1)-2.222(1) Å en **IIIGe14**⁷ y 2.210(3)-2.236(3) Å en **IIIGe15**⁷ y 2.111(1)-2.221(1) Å en el compuesto Ge(SC₆H₄-p-Me)₄,¹⁸ pero significativamente más cortas que las informadas en el espirociclo {PhP(C₆H₄S)₂}Ge- donde el átomo de germanio presenta una geometría local octaédrica [2.3429(12)-2.400(10) Å].¹⁵ La distancias Ge-Cl en **1** y **4** son más largas en 6 y 4% respectivamente que las informadas para la distancia normal aceptada para un enlace covalente Ge-Cl (2.10 Å en GeCl₄)¹⁹ y similares con las encontradas para los compuestos **IIIGe7** y **IIIGe8**,^{5,6} pero más largas que las encontradas para el 9,9-dicloro-9-germafluoreno.²⁰ La distancia Ge-Br es un 4% más larga que la observada para el GeBr₄ (2.30 Å) e intermedia entre las encontradas para compuestos que contienen enlaces germanio-carbono.^{21,22} La estructura molecular de los compuestos **1-5** muestran que tomando en consideración únicamente los enlaces covalentes Ge-S, Ge-L¹ y Ge-L² (L¹ = Cl, Br, Ph; L² = Ph, Et), el átomo de germanio se encuentra tetracoordinado con geometría tetraédrica.

La estructura molecular de los compuestos **1-5** muestra además de los dos enlaces con los átomos de azufre del tipo tiolato y dos enlaces de los ligantes exociclicos L_1 y L_2), una distancia lo suficientemente corta como para ser considerada una interacción intramolecular entre el átomo D y el átomo de Ge (D = S para **1**, **2** y **3**; D = O para **4** y **5**). Las distancias de la interacción S \rightarrow Ge en los compuestos **1**, **2** y **3** son 2.834(1), 2.782(2) y 3.280(1) Å respectivamente, las cuales son más largas que la suma de los radios covalentes de los átomos involucrados [$\Sigma r_{cov}(S,Ge) = 2.24$ Å]²⁵⁻²⁷ en un 27, 24 y 46% respectivamente, pero significativamente más cortas que la suma de los radios de van der Waals [$\Sigma r_{vdw}(S,Ge) = 3.75$ Å]. ²³⁻²⁵ La magnitud de esas distancias es consistente con la existencia de un enlace secundario.²³ Las distancia de la interacción S \rightarrow Ge en **1**, **2** y **3** son similares que las encontradas en los espirociclos **IIIGeIO** [2.842(1) Å],¹ **IIIGeI5** [3.237(3) y 3.453(3) Å],⁷ y el compuesto diclorado **IIIGe8** [3.01(3) Å]⁶ y significativamente más largas a las reportadas en el espirociclo [S(C_6H_4O)₂]₂Ge 2.447(1) Å.¹³ En los complejos **1** y **2** la fuerza de la interacción intramolecular S \rightarrow Ge disminuye con la disminución de la electronegatividad de los halógenos (Br < Cl), presentándose de esta manera la distancia más corta S \rightarrow Ge en el complejo con bromo (**2**).

La longitud de la interacción O \rightarrow Ge en los compuestos **4** [2.656(3) Å] y **5** [2.872(3) Å] es más larga que la suma de los radios covalentes [$\Sigma r_{C0V}(O,Ge) = 1.88$ Å]²³⁻²⁵ en un 41% y 53%, respectivamente. Las distancias de enlace O \rightarrow Ge encontradas en **4** y **5** son significativamente más largas que las reportadas para el compuesto **IIIGe7** [2.36(1) y 2.39(1) Å, en estado sólido presenta dos moléculas cristalográficamente independientes],⁵ y para los espirociclos en donde el átomo de germanio se encuentra pentacoordinado **IIIGe9** [2.492(3) Å]¹ y **IIIGe11** [2.616(1) Å]¹ pero más cortas que las reportadas para el espirociclo [**IIIGe14** donde el átomo de germanio se encuentra hexacoordinado y que en estado sólido muestra dos moléculas cristalográficamente independientes a moléculas cristalográficamente independientes dos moléculas cristalográficamente independientes (**111Ge14** donde el átomo de germanio se encuentra hexacoordinado y que en estado sólido muestra dos moléculas cristalográficamente independientes 2.914(3), 3.040(3), 2.955(3) y 2.946(3) Å].⁷

Tomando en consideración la interacción intramolecular $D \rightarrow Ge$ el átomo de germanio presente en las dibenzogermocinas 1-5 experimenta un aumento en su número de coordinación de tetracoordinado a pentacoordinado. Así, considerando lo anterior la geometría que adopta el átomo de germanio puede ser descrita como una bipirámide trigonal (BPT), donde las posiciones axiales están ocupadas por los átomos de halógeno (para 1, 2 y 4) y el átomo del carbono *ipso* del grupo fenilo (para 3 y 5) y el átomo donador D (S para 1, 2 y 3; O para 4 y 5) mientras que las posiciones ecuatoriales son ocupadas por los átomos de azufre del tipo tiolato y los átomos del carbono *ipso* del grupo fenilo (para 1, 2, 3 y 5) y el átomo del carbono del grupo metileno (para 4).

Considerando el aumento del número de coordinación que experimenta el átomo de germanio, es importante estimar el grado de desplazamiento de tetracoordinado con geometría ideal tetraédrica a pentacoordinado con geometría ideal de BPT. El grado de desplazamiento de la geometría del átomo de germanio de tetraédrico a BPT es determinado utilizando diferentes criterios; **a**) El criterio de la distancia de la interacción D \rightarrow A propuesto por Holmes *et al*²⁶⁻²⁸. **b**) El criterio mediante el uso de los seis ángulos de un tetraedro desarrollado por Draeger *et al*^{29,30} **c**) El criterio de la medida de la distancia del átomo central (Đ) con respecto al plano formado por las tres posiciones ecuatoriales.³¹⁻³³ Los resultados obtenidos son mostrados en la tabla 2.5.

Para poder establecer la magnitud de la interacción intramolecular D \rightarrow Ge se utilizó el criterio de orden de enlace intramolecular (*oe*) propuesto Pauling³⁴ obtenido a través del incremento de la distancia entre los átomos D \rightarrow A, los resultados obtenidos son mostrados en la tabla 2.5. El análisis del desplazamiento de BPT %, $\Delta\theta$, D y el orden de enlace (*oe*) en las dibenzogermocinas 1-5 muestra que corren en forma paralela, por tanto los compuestos que presentan el mayor desplazamiento de geometría BPT, el mayor $\Delta\theta$, el menor Đ y el mayor orden de enlace (*oe*) son los compuestos halogenados 1, 2 y 4, lo cual indica la importancia de la electronegatividad del ligante exocíclico enlazado al átomo de germanio en el aumento del número de coordinación del átomo de germanio. Los compuestos difenilados 3 y 5 presentan el menor desplazamiento de BPT, el mayor Đ y el menor orden de enlace (*oe*), lo cual indica que la presencia de los dos grupos fenilo unidos al átomo de germanio reducen su acidez comparada con los compuestos 1, 2 y 4 donde el átomo de germanio se encuentra unido a un electronegativo como los son los halógenos.

La conformación que adopta el anillo de ocho miembros en las dibenzogermocinas **1** - **5** se puede describir como bote torcido con simetría C_1^{13-14} Esta descripción está basada en la no equivalencia de los ángulos de torsión de los sis.te'mas C-S-Ge-S y C-D-C-C para las dos mitades del anillo de ocho miembros (Figura 2.16). Para resaltar esta diferencia, se analizaron los ángulos de torsión de los sistemas C-S-Ge-S y C-D-C-C, el primer sistema de ángulos de torsión presenta diferencias que se encuentran en el intervalo 62.1 a 86.0° mientras que el intervalo para el segundo sistema de ángulos de torsión va de 47.8 a 61.9°. Los dos límites superiores de ambos intervalos corresponden al compuesto **3**, que es el más distorsionado.

La comparación estructural entre los germocanos (**IIIGe**) y las dibenzogermocinas (1 - 5) muestra que el sistema dibenzogermocina es lo suficientemente flexible para dar lugar a la existencia de las interacciones $D \rightarrow Ge$ como en los germocanos que son sistemas menos rígidos y menos voluminosos

Compuesto	D	Ľ	L ²	$\substack{D\toGe-L^1\\ \binom{o}{O}}$	Ge-L ¹ (Å)	D→Ge (Å)	BPT° (%)	$\Delta \theta^{b}$ (°)	$\stackrel{D^c}{({ m A})}$	oe" Ge-Ll	<i>∆d^e</i> D→Ge (Å)	₀e ^c D→Ge
1	S	Cl	Ph	169.57(4)	2.233(1)	2.834(1)	60.7	62.35	0.280	0.928	0.594	0.145
2	S	Br	Ph	175.99(4)	2.401(1)	2.782(2)	64.1	63.99	0.264	0.875	0.542	0.172
3	S	Ph	Ph	168.3(1)	1.959(3)	3.280(1)	31.1	17.45	0.608	1.106	1.038	0.034
4	0	Cl	Et	166.97(6)	2.187(1)	2.656(3)	51.2	40.09	0.446	1.077	0.778	0.080
5	0	Ph	Ph	169.5(1)	1.938(4)	2.872(3)	37.6	18.04	0.602	1.184	0.992	0.040
$D \rightarrow Ge = \Sigma_{LedW}(D \rightarrow Ge)$ $r_{edW}(S,Ge) = 3.75 \text{ Å}], [2]$ $\theta = \Sigma \theta_{eq} - \Sigma \theta_{ax}, \therefore \text{ si } 2$ i D = 0.71 Å la geometric scremento de la dista $r_{eov}(Ge,Br) = 2.36 \text{ Å}], [2]$ $a = 10^{-(1.41.4d)}$ [4]	Ge) la g $\Sigma r_{vaw}(0, -)$ $\Sigma (θ) = (-)$ $Ta es T_{d},$	eome Ge) =) ^o la g , si <i>Đ</i> <i>i</i> = ,C) =	tría t 3.47 geome = 0.0 (d _{exp} - 1.99	tene carácter Å], [$\Sigma r_{eev}(S, S)$ tria es T _d , si 0 Å la geome Σr_{eev}). ³⁴ [Σr_{eev}]. ^{10,31-33}	te T _d , si Ge) = 2.24 $\Delta\Sigma(\theta)$ = 90 etría es BP f _{orv} (S,Ge)	D→Ge = Å], [Σr_{cov} (0) ⁹ la geomet Γ , ³¹⁻³³ = 2.24 Å]	Σr _{cov} (E D,Ge) = tria es B , [Σr _{cev}	⊢→Ge) 1.88 Å] PT. ^{29,30} (O,Ge)	la geom 23-25 = 1.88	etria tien Å], [Σr	e carácter _{cov} (Ge,CI)	de BPT. ²⁶ = 2.21 Å

El análisis estructural en estado sólido para los dibenzogermocinas **1-5** permite concluir que sí existe una interacción intramolecular transanular entre los átomos donadores D (D = S, O) y el átomo de germanio (D \rightarrow Ge). Para apoyar esta propuesta de la existencia de un enlace en esta región de la molécula se realizaron estudios teóricos de estructura electrónica.

2.2.5 Estudio teóricos de estructura electrónica.

En la búsqueda de una mejor comprensión de la naturaleza de la interacción intramolecular transanular D \rightarrow Ge, se realizaron estudios teóricos de orden de enlace, traslape interatómico y cargas de los átomos, los cuales fueron obtenidos dentro de la aproximación del orden natural de enlace (siglas en inglés NBO),³⁵ utilizando un nivel de teoría de los funcionales de densidad (DFT) utilizando el funcional híbrido B3LYP para las dibenzogermocinas **1-5**. Todos los cálculos fueron realizados con el paquete de programas Gaussian 03.³⁶ (Para mayor información ver la sección Detalles computacionales). A continuación se muestran los resultados obtenidos.

En primer lugar es importante cotejar los parámetros estructurales de los compuestos 1-5 obtenidos experimentalmente con los obtenidos mediante la realización de los cálculos teóricos a nivel DFT, denotadas como l^*-5^* , respectivamente. Las figuras 2.17-2.21 muestran la comparación entre la estructura molecular obtenida por difracción de rayos X y la calculada con DFT. La simple inspección visual indica una buena correlación. Un mejor parámetro para describir esta comparación es emplear los valores de la desviación de la estructura obtenida por cálculos DFT con respecto a la obtenida por difracción de rayos X (figuras 2.17-2.21). Un ajuste perfecto se obtiene cuando la desviación cuadrática media (RMS) es igual a cero. Estos valores de RMS indican un buen ajuste entre las dos estructuras (intervalo de 0.199 a 0.349 Å).^{*}

La comparación muestra también que la distancia intramolecular D \rightarrow Ge para 1-5 es más larga que la encontrada en estado sólido; esto puede ser explicado considerando que el fragmento D \rightarrow Ge puede estar ligeramente contraído en el estado sólido debido a las fuerzas del empaquetamiento cristalino. La diferencia más grande para S—>Ge es para 2 (-0.39 Å), seguida por la que muestra los compuestos 1 y 3 ~ 0.32 Å y - 0.05 Å respectivamente. Para Jos compuestos 4 y 5 las distancias O \rightarrow Ge son -0.13 Å y 0.07 Å más largas que la obtenidas por rayos X. La tabla 2.6 muestra las distancias y ángulos de enlace más relevantes de las estructuras moleculares obtenidas por difracción de rayos X y las optimizadas por B3LYP/ccSDDTZ de los complejos 1-5.

 $RMS = [l/n \Sigma (\Delta p)^2]^{1/2}$

Donde:

^{*} La comparación fue realizada empleando la desviación cuadrática media (RMS por sus siglas en inglés) definida por la ecuación:

n es el número de pares de átomos comparados entre las dos estructuras Ap es la separación entre cada par de átomos de las dos estructuras. Los valores de Ap fueron obtenidos con el programa XP incluido en el paquete SHELX.

Figura 2.17. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto **1** (RMS = 0.201 Å).

Figura 2.18. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 2 (RMS = 0.237 Å).

Figura 2.19. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto **3** (RMS = 0.199 Å).

Figura 2.21. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 5 (RMS = 0.349 Å)

2.2.5.1 Análisis de NBO.

La tabla 2.7 muestra los valores del índice de enlace de Wiberg calculado para átomos seleccionados en las dibenzogermocinas **1** - **5**. El valor de los índices para todos los enlaces germanio-azufre (tiolato) es similar (0.8185 a 0.8561) y son consistentes con la formación de un enlace covalente germanio-azufre (Ge-S). El índice de enlace de Wiberg para los átomos de germanio-azufre(tioéter) (S \rightarrow Ge) es notablemente más bajo que el encontrado en los enlaces germanio-azufre(tiolato) S-Ge siendo aproximadamente el 13 % del índice encontrado para 1 y 2, y el 7 % del encontrado para 3. Para el caso de los compuestos **4** y **5** el índice de enlace para 0->Ge es el de menor valor encontrado, lo cual indica que la interacción S \rightarrow Ge en los compuestos **1-3** es más fuerte que la interacción O \rightarrow Ge en los compuestos **4** y **5**.

Compuesto	1	1*	2	2*	3	3*	4	4*	5	5*
D	S	S	S	S	S	S	0	0	0	0
L'	CI1	CI1	Br1	Br1	C19	C19	CI1	CI1	C19	C19
L ²	C13	C13								
D→Ge1	2.834(1)	3.157	2.782(2)	3.181	3.280(1)	3.328	2.656(3)	2.781	2.872(3)	2.944
Ge1-S1	2.236(1)	2.278	2.228(2)	2.280	2.235(1)	2.281	2.231(1)	2.272	2.229(1)	2.286
Ge1-S2	2.228(1)	2.273	2.216(2)	2.273	2.255(1)	2.297	2.221(1)	2.278	2.239(1)	2.288
Ge1-L1	2.233(1)	2.215	2.401(1)	2.377	1.959(3)	1.970	2.187(1)	2.210	1.938(4)	1.966
Ge1-L ²	1.941(3)	1.953	1.943(5)	1.955	1.942(4)	1.960	1.943(4)	1.969	1.954(4)	1.960
D→Ge1-L ¹	169.57(4)	169.79	175.99(4)	169.69	168.3(1)	170.32	166.97(6)	169.89	169.5(1)	168.4
D→Ge1-S1	77.60(3)	72.68	80.64(5)	72.14	73.36(3)	73.71	74.35(6)	72.75	71.94(6)	70.80
D→Ge1-S2	80.76(3)	76.42	82.45(5)	76.01	68.78(3)	69.61	75.17(6)	73.40	71.98(6)	69.56
D→Ge1-L ²	88.7(1)	84.90	85.3(2)	84.40	78.2(1)	78.66	84.2(1)	84.16	76.8(1)	79.05
S1-Ge1-L1	98.47(4)	102.75	97.03(5)	103.09	100.6(1)	102.79	98.57(5)	102.08	100.8(1)	104.4
S2-Ge1-L1	92.46(4)	97.84	95.59(5)	98.27	105.1(1)	104.07	98.86(5)	101.84	104.8(1)	103.8
S1-Ge1-S2	115.35(4)	114.14	114.42(7)	113.96	110.58(4)	111.01	115.47(5)	114.93	111.65(5)	112.5
S1-Ge1-L2	120.5(1)	115.14	120.9(2)	114.68	112.4(1)	113.63	115.0(1)	113.92	113.8(1)	110.8
S2-Ge1-L ²	119.0(1)	118.13	120.2(2)	117.81	113.7(1)	113.49	116.7(1)	115.79	111.6(1)	112.2
L ¹ -Ge1-L ²	101.6(1)	105.30	98.6(2)	105.91	113.6(1)	110.90	108.8(2)	105.94	113.4(2)	112.5
C6-D-C7	101.7(2)	103.58	101.7(3)	103.56	103.0(2)	103.57	116.6(3)	118.33	116.3(3)	118.2
S2-Ge1-S1-C1	-31.1(1)	-19.40	-40.3(2)	-18.33	-97.7(1)	-95.25	-33.0(1)	-29.68	-94.0(1)	-91.70
S1-Ge1-S2-C12	99.1(1)	97.02	100.7(2)	96.56	11.7(1)	15.49	98.6(1)	95.50	31.9(2)	23.31

compuesto	os 1–5 . Datos	obtenidos a niv	el DFT con las	base B3LYP/co	SDDTZ.
Compuesto	1	2	3	4	5
D	S	S	S	01	01
	CI1	Br1	C19	CI1	C19
L ²	C13	C13	C13	C13	C13
D-→Ge1	0.1080	0.1027	0.0594	0.0579	0.0357
Ge1-S1	0.8308	0.8303	0.8561	0.8438	0.8478
Ge1-S2	0.8506	0.8543	0.8185	0.8349	0.8350
Ge1-L ¹	0.7757	0.8356	0.7233	0.7880	0.7326
Ge1-L ²	0.7154	0.7149	0.7260	0.7538	0.7292
D-C6	1.0088	1.0091	1.0258	0.9120	0.9089
D-C7	1.0201	1.0207	1.0121	0.9012	0.9245
S1-C1	1.0557	1.0551	1.0628	1.0587	1.0587
S2-C12	1.0634	1.0611	1.0558	1.0587	1.0565

Tabla 2.7. Valores del índice de enlace de Wiberg para enlaces seleccionados de los compuestos 1–5. Datos obtenidos a nivel DFT con las base B3LYP/ccSDDTZ.

Para tener una visión más amplia para el entendimiento de la naturaleza del enlace $D \rightarrow Ge$ (D = S, O), se calculó el traslape átomo-átomo; los datos obtenidos se muestran en la tabla 2.8. De estos datos se observa que el valor de traslape entre los átomos de germanio-azufre(tiolato) son similares en los compuestos 1-5. También se observa que el valor del traslape en la región S \rightarrow Ge en los compuestos 1-3 es mayor que el valor del traslape en la región 0 \rightarrow Ge en los compuestos 4 y 5 lo cual indica que la interacción S \rightarrow Ge es más fuerte que la interacción O \rightarrow Ge. Por otra parte, el menor valor del traslape en la región D \rightarrow Ge lo presentan los compuestos 3 y 5, indicando que los sustituyentes orgánicos debilitan la interacción.

Compuesto	1	2	3	4	5
D	S3	S3	S3	01	01
L	CI1	Br1	C19	CI1	C19
L^2	C13	C13	C13	C13	C13
D→Ge1	0.1484	0.1429	0.0906	0.0877	0.0559
Ge1-S1	0.7770	0.7728	0.7757	0.7880	0.7685
Ge1-S2	0.7899	0.7885.	0.7516	0.7810	0.7632
Ge1-L ¹	0.7314	0.7899	0.7318	0.7389	0.7410
Ge1-L ²	0.7403	0.7336	0.7406	0.7614	0.7438

Tabla 2.8. Traslape átomo-átomo en función NBO para los compuestos **1-5**. Datos obtenidos a nivel DFT con las base B3LYP/ccSDDTZ.

Como parte final del análisis teórico del enlace $D \rightarrow Ge$ (D = S, O) se calcularon las cargas de los átomos dentro del procedimiento de NBO. En la tabla 2.9 se muestran los valores obtenidos. De los datos mostrados en la tabla 2.9 se observa que el átomo de azufre(tioéter) en los compuestos **1-3** exhibe aproximadamente la misma carga positiva (0.30) mientras que los átomos de azufre (tiolato) presentan aproximadamente la misma carga negativa en los compuestos **1-5**. Una explicación de estas cargas diferentes en los dos tipos de azufre dentro del anillo de ocho miembros de la dibenzogermocina puede ser atribuida al diferente ambiente de

los átomos de azufre en los compuestos **1-3**: los átomos de azufre(tiolato) se encuentran unidos básicamente de un modo dicoordinado y formado un enlace covalente con un átomo de germanio cargado positivamente, mientras que el átomo de azufre(tioéter) se encuentra enlazado a átomos de carbono más electronegativo y también se encuentra compartiendo su densidad electrónica con el átomo ácido de Ge(IV). El átomo de oxígeno en los compuestos **4** y **5** presenta la misma carga negativa, que es promovida por la alta electronegatividad del átomo de oxígeno.

e los compuestos	51 - 5. Dates	s obtenidos a	mver DF1 cc	m la base bo	LTP/ccSDD
Compuesto	1	2	3	4	5
D	S3	S3	S3	01	01
D	0.30	0.30	0.30	-0.56	-0.56
S1	-0.13	-0.13	-0.13	-0.12	-0.13
S2	-0.11	-0.11	-0.16	-0.11	-0.15
Ge1	1.28	1.19	1.40	1.29	1.40
CI1	-0.41	-	-	-0.41	-
Br1	-	-0.32	-	-	-
C13	-0.51	-0.51	-0.50	-0.89	-0.50
C19	-	-	-0.50	-	-0.50

Tabla 2.9. Cargas atómicas obtenidas dentro del procedimiento NBO para átomos seleccionados de los compuestos 1 - 5. Datos obtenidos a nivel DFT con la base B3LYP/ccSDDTZ.

2.2.5.2 Discusión del análisis teórico en función de NBO.

Los valores del índice de enlace de Wiberg (Tabla 2.7) muestran la existencia de un interacción intramolecular entre D \rightarrow Ge (D = S; O) en los compuestos 1-5. Los valores para el traslape del orbital atómico natural en función del NBO (Tabla 2.8) confirman la existencia de esta interacción con tendencia a un enlace covalente. Sin embargo, el análisis de cargas atómicas (Tabla 2.9) muestran la existencia de un carácter Coulómbico (electrostático) entre el átomo donador D (D = S; O) y el átomo de germanio en la interacción intramolecular D \rightarrow Ge.

Lo anterior permite concluir que la interacción intramolecular S \rightarrow Ge en los compuestos 1 y 2 tiene dos componentes: una con carácter covalente y una segunda con un carácter Coulómbico. En estos dos compuestos la interacción S \rightarrow Ge presenta un carácter covalente que predomina sobre la interacción Coulómbica mostrada por la interacción de las cargas positiva-positiva del átomo de azufre(tioéter) y del átomo de germanio. Esta interacción electrostática es favorecida debido al átomo del halógeno enlazado al átomo de germanio. Argumentos similares pueden ser dados para la interacción entre el átomo de oxígeno y el átomo de oxígeno y la carga positiva del átomo de germanio sugieren un mayor carácter Coulómbico entre la carga positiva del átomo de germanio y la carga negativa del átomo de oxígeno para estabilizar la interacción intramolecular O \rightarrow Ge.

En los compuestos 3 y 5 se puede apreciar el comportamiento dual entre el carácter covalente y el carácter Coulómbico. En este caso no se tiene la presencia de un átomo de halógeno para favorecer una interacción electrostática positiva-positiva. Por lo tanto la interacción S3->Ge en 3 presenta un mayor carácter covalente que Coulómbico, mientras que la interacción 0->Ge es dominada por una fuerte interacción Coulómbica, lo cual hace que la distancia intramolecular

entre el átomo de oxígeno y germanio O \rightarrow Ge presente una mayor fuerza, lo cual es soportado por los resultados obtenidos en términos de desplazamiento de BPT y orden de enlace *(oe)* para los compuestos **3** y **5** (Tabla 2.5 y 2.9).

Con lo anterior es razonable concluir que la interacción intramolecular S \rightarrow Ge en 1, 2 y 3 presenta preferentemente un carácter covalente más que un carácter Coulómbico, y para el caso de la interacción intramolecular O \rightarrow Ge en 4 y 5 es más dominante el carácter Coulómbico que el carácter covalente.

2.3 Conclusiones.

Con base en los resultados obtenidos en esta parte de trabajo de investigación se ha encontrado que los ligantes $D(C_6H_4SH)_2$ (D = O, S) aumentan el número de coordinación del átomo germanio, mediante la formación de una interacción intramolecular transanular D \rightarrow Ge.

La fuerza de la interacción D \rightarrow Ge disminuye con el aumento en la distancia D \rightarrow Ge (Tabla 2.7), lo cual indica la existencia de una disminución en la densidad electrónica en esta región. La tendencia que se sigue los compuestos **1** y **2** es que la fuerza de la interacción S \rightarrow Ge es más fuerte con la disminución de la electronegatividad del halógeno, con la distancia más corta en el caso del derivado bromado (**2**). La longitud de enlace Ge $-L^1$ en los compuestos **1**-**5** es mayor que la informada para el enlace sencillo Ge-L¹ [L¹ = Cl (en **1** y **4**); Br (en **2**); Ph (en **3** y **5**)] (Tabla 2.5). Con esta información se puede proponer que el sistema D \rightarrow Ge-L' presenta un enlace del tipo multicéntrico de tres centros-cuatro electrones.

Tomando en cuenta la interacción intramolecular transanular $D \rightarrow Ge$ (D = S, O) en los compuestos **1-5**, el átomo de germanio presenta una geometría local de BPT.

Se observa también que la fuerza de la interacción $D \rightarrow Ge$ en las dibenzogermocinas 1-5, disminuye cuando los átomos de halógeno son parcial o totalmente reemplazados por grupos orgánicos.

En los compuestos **3** y **5** se observa que el átomo de oxígeno es mejor donador que el átomo de azufre hacia germanio, existiendo una mayor interacción O \rightarrow Ge que es consistente con el mayor desplazamiento de BPT de 37.6 %, *oe* de 0.034, un $\Delta\theta$ de 18.04 ° y Đ de 0.602 Å para el complejo **5**, con respecto al desplazamiento de BPT del 31.1 %, *oe* de 0.034, un $\Delta\theta$ de 17.41 ° y Đ de 0.608 Å calculados para **3**.

Los parámetros estructurales de las moléculas geométricamente optimizadas en fase gaseosa (l*-5*) concuerdan razonablemente bien con los obtenidos experimentalmente mediante difracción de rayos X de monocristal (1-5). Los cálculos teóricos indican que la distancia de enlace $D \rightarrow Ge$ en los compuestos 1 - 5 es más larga que la encontrada en el estado sólido.

El análisis realizado dentro la aproximación de NBO ha permitido lograr un mejor entendimiento de la naturaleza del enlace entre un átomo donador y un átomo aceptor. De acuerdo al análisis de los valores del índice de enlace de Wiberg (Tabla 2.7) se ha demostrado la existencia de una interacción intramolecular entre D \rightarrow Ge (D = S; O) en los compuestos **1-5**. Los valores para el traslape del orbital atómico natural en función NBO (Tabla 2.8) confirman la existencia de esta interacción con tendencia a un enlace covalente. Sin embargo, el análisis de cargas atómicas (Tabla 2.9) muestra la existencia de un carácter Coulómbico (electrostático) entre el átomo donador (D = S; O) y el átomo de germanio en la interacción intramolecular D \rightarrow Ge. El análisis teórico nos indica que en el sistema D \rightarrow Ge debe ser considerado como una interacción débil con dos componentes; uno de tipo covalente y un segundo con carácter Coulómbico, siendo éste el dominante en los compuestos con D = oxígeno.

2.4 Parte Experimental.

Todas las reacciones se llevaron a cabo en atmósfera de argón libre de oxígeno y humedad mediante el uso de técnicas Schlenk.³⁷ Los disolventes fueron secados y destilados antes de su uso por métodos convencionales. Los puntos de fusión se determinaron en un aparato Melt-Temp II y se reportan sin corregir. Los espectros se obtuvieron de los siguientes instrumentos: espectros de MS-FAB+; se determinaron en un JEOL JMS-AX505HA que usa un haz de Xe a 6 keV, como matriz se utilizó alcohol nitrobencílico (NBA). Espectros de MS-EI; se obtuvieron de un espectrómetro de masas Hewlett Packard 5989A. Análisis elemental: Perkin Elmer Series II CHNS/O Analyzer. Los espectros de IR se obtuvieron en el rango 4000-400 cm¹¹ en un espectrófotometro FT-IR Perkin-Elmer System 2000, como pastillas de KBr. Los espectros de RMN de ¹H y ¹³C{¹H} se obtuvieron en un espectrómetro JEOL Eclipse 400 a 25 °C a una frecuencia de ¹H 399.78 MHz y ¹³C{¹H}; 100.53 MHz. Los desplazamientos químicos (δ) se reportan en ppm, utilizando como referencia TMS. Los ligantes S(C₆H₄SH)₂ y O(C₆H₄SH)₂ fueron preparados de acuerdo a los métodos de síntesis reportados.^{16,17} PhGeCl₂, Ph₂GeCl₂, EtGeCl₃, ⁿ⁻BuLi (1.6 M, en hexanos), KBr y HBr fueron adquiridos de Aldrich y Fluka y se utilizaron como se recibieron.

2.4.1 Preparación de las dibenzogermocinas 1-5.

S(C₆H₄S)₂GePhCl (1): ⁿ⁻BuLi en hexanos (1.6 M, 5.5 mL, 8.8 mmol) fue adicionado a una solución que contenía S(C₆H₄SH)₂ (1.0 g, 4.0 mmol) en thf (40 mL) a 0°C en baño de hielo. Se continuo con la agitación a la misma temperatura durante 30 min, la solución se torna de color rojo, a la cual se le adicionó el PhGeCl₃ (0.66 mL, 4.0 mmol) con la ayuda de una jeringa. La solución resultante se dejó en agitación a temperatura ambiente durante toda la noche. La solución incolora obtenida se llevó a reflujo por 4 h, la suspensión obtenida se llevó a enfriamiento a temperatura ambiente. El LiCl que precipitó fue removido por filtración a gravedad. La mezcla volátil de disolventes fue removido con la ayuda de flujo positivo de argón, produciendo a 1 como cristales incoloros, que fueron lavados con hexanos (40 mL) y filtrados por succión. Rendimiento: 1.50 g (86%). Espectro de masas (FAB+) $[m/z \text{ (rel int)}] = 434 (5, M^+)$, 399 (50, M^+ -C1), 216 (45, M^+ -Cl-PhSGe). P.f = 201-3°C. Análisis Elemental para S(C₆H₅S)₂PhGeCl; Calculado: C, 49.56; H, 3.22. Encontrado: C, 49.76; H, 3.20. RMN 'H $(CDC1_3)$: 5 = 7.16 (ddd, V-H² = V-H⁴ = 7.74 Hz, ⁴J_HV = 1.44 Hz, 2 H, H³), 7.27 (ddd, V-H⁴) = VV = 7.74 Hz, $V-H^4 = 1.44 Hz$, 2 H, H^2), 7.40 (m, 3 H, $H^6 y H^7$), 7.44 (dd, ${}^{3}J_{H}V = 7.74 Hz$, $V-H^2 = 1.44 Hz$, 2 H, H^4), 7.65 (dd, ${}^{3}J_{H}V = 7.74 Hz$, ${}^{4}J_{H}{}^{1}-{}^{3}_{H} = 1.44 Hz$, 2 H, H^1), 7.81 (m, 2 H, H⁵) ppm. RMN ${}^{13}C{IH}$ (CDC1₃)¹ 5 = 127.5, 128.9, 129.9, 130.9, 131.1, 131.2, 132.2, 134.2, 140.7, 141.5 ppm. IR (pastilla de KBr, cm⁻¹): v = 3045, 1568, 1480, 1445, 1430, 1247, 1078, 1040, 1032, 851, 754, 733, 714, 689, 657.

 $S(C_6H_4S)_2GePhBr$ (2): Una suspensión de $S(C_6H_4S)_2GePhCl-(1, 0.26 g, 0.60 mmol)$, KBr (0.18 g, 1.5 mmol) y HBr 48% (2 mL) en benceno (25 mL) fue colocada a reflujo durante 16 h. El agua de la solución fue removida con la ayuda de una trampa Dean-Stark. La suspensión blanca obtenida se hizo pasar por un columna de Ceuta y Na₂SO₄. Posteriormente el benceno fue removido con la ayuda de un flujo dinámico de argón, de esta manera se obtuvo 2 como cristales incoloros, que fueron lavados con hexano (40 mL) y filtrados por succión. Rendimiento: 180 mg

(63%). Espectro de masas (FAB+) [m/z (reí int)] = 478 (3, M⁺), 399 (50, M⁺ - Cl), 216 (20, M⁺ - Cl-PhSGe). P.f = 197-9°C. Análisis elemental para $S(C_6H_5S)_2PhGeBr$; Calculado: C, 45.23; H, 2.74. Encontrado: C, 45.96; H, 2.74. RMN ¹H (CDC1₃): δ = 7.16 (ddd, ³J_H³-² = ³J_H³-H⁴ = 7.68 Hz, ⁴J_H³-H' = 1.48 Hz, 2 H, H³), 7.27 (ddd, ³J_HV = ³JHV = 7.68 Hz, ⁴J_H²-H⁴ = 1-48 Hz, 2 H, H²), 7.39 (m, 3 H, H⁶ and H⁷), 7.44 (dd, W = 7.68 Hz, ⁴J_HV = 1-48 Hz, 2 H, H⁴), 7.65 (dd, ³J_H¹-H² = 7.68 Hz, V-H³ = 1-48 Hz, 2 H, H¹), 7.78 (m, 2 H, H⁵) ppm. RMN ¹³C{1H} (CDC1₃): 5 = 127.5, 128.9, 129.9, 130.9, 131.0, 132.1, 132.3, 134.3, 140.7, 141.9 ppm. IR (pastilla de KBr, cm''):*u* = 3050, 1568, 1445, 1442, 1249, 1081, 1039, 862, 735, 730, 710, 692.

Los compuestos **3-5** fueron preparados de forma similar al compuesto **1**.

S(C₆H₅S)2GePh2 (3): S(C₆H₄SH)₂ (0.42 g, 1.68 mmol), "BuLi en hexanos (1.6 M, 2.3 raL, 3.7 mmol), Ph2GeCl2 (0.35ml, 1.68 mmol). Cristales incoloros. Rendimiento: 0.50 g (63%). Espectro de masas (FAB+) [m/z (reí int)] = 476 (18, M⁺), 399 (pico base, M⁺ - Ph), 216 (65, M⁺ - Ph - Ph - SGe). P.f = 126-8°C. Análisis elemental para S(C₆H₅S)₂Ph₂Ge; Calculado: C, 60.66; H, 3.82. Encontrado: C,60.83; H, 3.98. RMN ¹H (CDC1₃): δ = 7.13 (ddd, ³J_HV = ³J_H²-H³ = 7.72 Hz, V- H⁴ = 1.44 Hz, 2 H, H²), 7.18 (ddd, ³J_HV = W = 7.72 Hz, ⁴J_HV = 1.44 Hz, 2 H, H³), 7.34 (m, 6 H, H⁶ and H⁷), 7.44 (dd, ³J_H⁴-H³ = 7.72 Hz, ⁴J_HV = 1-44 Hz, 2 H, H⁴), 7.63 (m, 4 H, H⁵), 7.66 (dd, V-H² = 7.72 Hz, ⁴J_HV = 1.44 Hz, 2 H, H¹) ppm. RMN ¹³C{1H} (CDC1₃):§= 127.4, 128.4, 128.5, 130.0, 133.2, 134.3, 134.9, 137.4, 138.2, 139.8 ppm. IR (pastilla de KBr, cm⁻¹): rj = 3066, 3047, 1568, 1480, 1444, 1431, 1248,1085, 1040,859,752,734,716,693.

O(C₆H₄S)₂GeEtCl (4): O(C₆H₄SH)₂ (0.92 g, 3.9 mmol), ""BuLi en hexanos (1.6 M, 5.0 raL, 8.0 mmol), EtGeCl₃ (0.5 raL, 3.9 mmol). El sólido resultante fue filtrado y recristalizado de "PrOH. Cristales incoloros Rendimiento: 0.20 g (28%). Espectro de masas (EI-MS, CHCl₃, 30 eV) [m/z (reí int)] = 370 (10, M⁺), 341 (20, M⁺- Et), 305 (10, M⁺ - Et - Cl), 200 (pico base, M⁺ - Et - Cl - GeS). P.f = 96-8°C. Análisis elemental para O(C₆H₄S)₂EtGeCl; Calculado: C, 45.51; H, 3.55. Encontrado: C, 45.80; H. 3.55. RMN 'H (CDCl₃ 5 = 1.18 (t, ³J_HV = 7.70 Hz, 3 H, H⁶), 1.80 (q, V-H⁶ = 7.70 Hz, 2 H, H⁵), 7.13 (dd, ³J_HV = 7.70 Hz, ⁴J_HV = 1-48 Hz, 2 H, H⁴), 7.15 (ddd, V-H¹ = ³JH²-H³ = 7.70 Hz, V-H⁴ = 1-48 Hz, 2 H, H²), 7.23 (ddd, ³J_HV = W = 7.70 Hz, V-H' = 148 Hz, 2 H, H³), 7.53 (dd, V-H² = 7.70 Hz, ⁴J_HV = 1.48 Hz, 2 H, H¹) ppm. RMN ¹³C{1H} (CDCl₃): 5 = 8.3, 23.0, 120.2, 125.8, 126.2, 132.6, 152.7 ppm. IR (pastilla de KBr, cm^{"1}): u = 3061, 2958, 2923, 2868, 1564, 1462, 1440, 1210, 1061, 869, 799, 757, 732, 700.

O(C₆H₅S)₂GePh₂ (**5**): O(C₆H₄SH)₂ (0.39 g, 1.66 mmol), "BuLi en hexanos (1.6 M, 2.3 mL, 3.7 mmol), Ph₂GeCl₂ (0.35ml, 1.68 mmol). Cristales incoloros. Rendimiento: 0.20 g (26%). Espectro de masas (FAB+) [m/z (reí int)] = 460 (35, M⁺), 383 (pico base, M⁺- Ph), 200 (95, M⁺ - Ph - PhGeS), P.f = 105-107 °C. Análisis elemental para O(C₆H₅S)2Ph₂Ge; Calculado: C, 62.78; H, 3.95. Encontrado: C, 63.04; H, 3.97. RMN ^fH (CDC1₃): 8 = 6.85 (dd, ³J_HV = 7.36 Hz, ⁴J_HV = 1.80 Hz, 2 H, H⁴), 7.04 (ddd ³J_HV = V-H⁴ = 7.36 Hz, V-H' = 1-80 Hz, 2 H, H³), 7.09 (ddd, V-H¹ = V-H^{3 fe} 7.36 Hz, V-H⁴ = 1.80 Hz, 2 H, H²), 7.32 (m, 6 H, H⁶ and H⁷), 7.56 (dd, V-H² = 7.36 Hz, V-H³ = L80 Hz, 2 H, H¹), 7.65 (m, 4 H, H⁵) ppm. RMN ¹³C{1H} (CDC1₃): 5 = 120.6, 124.7, 126.6, 127.5, 128.4, 130.1, 133.6, 133.7, 136.4, 154.8 ppm. IR (pastilla de KBr, cm⁻¹): u = 3047,3011, 1565, 1462, 1430. 1249, 1214, 1089, 1063, 870, 800, 763, 755, 733, 696, 669.

2.4.2 Cristalografía de rayos X de $S(C_6H_4S)_2GePhCl(l)$, $S(C_6H_4S)_2GePhBr(2)$, $S(C_6H_4S)_2GePh_2$ (3) y $O(C_6H_4S)_2GeEtCl$ (4) y $O(C_6H_4S)_2GePh_2$ (5).

Los cristales de los compuestos **1**. **2**. **3** y **5** fueron crecidos por evaporación lenta de una solución de cloroformo. Los cristales del compuesto 4 fueron obtenidos mediante la recristalización con 'TrOH. Los datos de difracción de rayos X de los compuestos **1-5** fueron colectados a temperatura ambiente en un difractómetro CCD Smart 6000 usando una radiación de Mo-K α ($\lambda = 0.71073$ Å, monocromador de grafito). Los datos obtenidos fueron tratados utilizando el paquete de software SMART. Las estructuras fueron resueltas por métodos directos utilizando el programa SHELXTL NT Versión 5.10, utilizando el refinamiento de mínimos cuadrados F².³⁸ Se aplicó corrección por absorción mediante el uso del programa SADABS.³⁹ Los parámetros de desplazamiento de los átomos no hidrogenoides fueron refinados anisotrópicamente. La posición de los átomos de hidrogeno fueron fijadas con un parámetro isotrópico común.

2.4.3 Detalles Computacionales.

Las estructuras moleculares de los compuestos 1-5 fueron modeladas con el visualizador Gauss View,⁴⁰ posteriormente se optimizó la geometría utilizando el método semiempírico PM3.⁴¹ Finalmente se optimizó la geometría a nivel de la teoría de los funcionales de la densidad (DFT) utilizando el híbrido funcional B3LYP.⁴² En los cálculos DFT para el átomo de germanio se empleó un potencial relativista de core efectivo Sttutgart-Dresden (RECP)⁴³ con el empleo de bases de correlación consistente con una base triple-ζ para todos sus electrones.⁴⁴ Para los átomos de hidrógeno, carbono, azufre y los halógenos (Cl, Br)⁴² se empleó la base de correlación consistente con una base triple-ζ para todos sus electrones. Las bases utilizadas incluyen funciones de polarización y difusión. Las bases utilizadas son referidas como B3LYP/ccSDDTZ. El orden de enlace, traslape interatómico y las cargas fueron calculadas dentro la aproximación del NBO.³⁵ Todos los cálculos fueron realizados con la suite de programas Gaussian 03.³⁶

Bibliografía

- ¹ R. Cea Olivares, V. García Montalvo, M. Moya Cabrera, *Coord, Chem. Rev.*, 2005, *249*, 859-. Y las referencias ahí citadas.
- ²M. Beuter, U. Kolb, A. Zickgraf, E. Brau, M. Bletz, M. Draeger, *Polyhedron*, 1997, 16, 4005.
- ³ S. S. Karlov, E. Kh. Yajuboca, E. V. Gauchenova, A. A. Selina, A. V. Churakov, J. A. K. Howard, D. A. Tyurin, J. Lorberth, G. S. Zaitseva, Z *Naturforsch*, **2003**, *58b*, 1165.
- ⁴S. S. Karlov, E. Kh. Lermontova, M. V. Zabalov, A. A. Selina, A. V. Churakov, J. A. K. Howard, M.
- Y. Antipin, G. S. Zaitseva, Inorg. Chem. 2005, 44, 4881.
- ⁵ M. Draeger, Z. Anorg. Allg. Chem., **1976**, 453, 53.
- ⁶a).-M. Draeger, L. Ross, Chem. Ber., 1975, 108, 1712. b).- M. Draeger, Chem. Ber., 1975, 108, 1723.
- ⁷D. H. Chen, H. C. Chiang, C. H. Ueng, *Inorg. Chim. Acta*, **1993**, *208*, 99.
- ⁸M. Draeger, Chem. Ber., **1974**, 2601.
- ⁹M. Draeger, Z Anorg. Allog. Chem., **1975**, 411, 79.
- ⁰ M. Draeger, Z Anorg. Allog. Chem., **1976**, 424, 183.
- ¹ M. Draeger, Z Anorg. Allog. Chem., **1981**, 482, 7.
- ² H. M. Hoffmann, M. Draeger, J. Organomet. Chem., 1985, 33.
- ⁸ S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H. F. Hsu, *Inorg. Chem.*, 1997, 36, 5966.
- ⁴ T. Thompson, S. D. Pastor, G. Rihs, *Inorg. Chem.*, 1999, 38, 4163.
- ⁵ M. Y. Chiang, J. W. Lin, W. F. Zegn, Acta Cryst, 2005, C61, m84.
- ⁶ D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem., 1999, 1715.
- ⁷ J. G. Alvarado Rodríguez, N. Andrade López, S. González Montiel, G. Merino, A. Vela, *Eur. J. Inorg. Chem.* **2003**, 3554.
- ⁸ B. Kersting, B. Krebs, Inorg. Chem., 1994, 33, 3886.
- ⁹ J. E. Huheey, E. A. Keiter, R. L. Keiter, *Inorganic Chemistry: Principies of Structure and Reactivity*, Cuarta Edición, Harper Collins College Publishers, Nueva York, USA, **1993**, A30.
- ¹⁰ Y. Liu, D. Ballweg, T. Müller, I. A. Guzei, R. W. Clark, R. West, J. Am. Chem. Soc, 2002, 124, 12174.
- ² K. Tani, S. Kato, T. Kanda, S. Inagaki, Org. Lett, 2001, 3, 655.
- ² A. K. Brisdon, I. R. Crossley, R. G. Pritchard, J. E. Warren, *Inorg. Chem.*, **2002**, *41*, 4748.
- ² N. W. Alcock, *Adv. Inorg. Chem. Radiochem.*, **1972**, 75, 1.

W. W. Porterfield, *Inorganic Chemistry: A Unified Approach*, Segunda Edición, Academic Press, Inc. USA **1993**, p. 214.

- ²⁵ A. Bondi, J. Phys. Chem., **1964**, 65, 441.
- ²⁶ A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1999**, **38**, 3369.
- ²⁷N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1998**, 37, 3862.
- ²⁸ D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082. U.
- Kolb, M. Draeger, B. Jousseaume, Organometallics, 1991, 10, 2737'.
- ³⁰ U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organtmetallics, 1994, 13, 4413.
- ³ U. Kolb, M. Beuter, M. Draeger, Inorg. Chem., 1994, 33, 4522.
- ³² H. B. Bürgi, *Inorg. Chem.*, **1973**, *12*, 2321.
- ³³ D. Britton, J. D. Dunitz, J. Am. Chem. Soc. **1981**, 103, 2971.
- ³⁴ L. Pauling, *The Nature of the Chemical Bond*, Tercera Edición, Cornell University, Ithaca, **1960**, Cap. 7.
- ³⁵ A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, 88, 899.
- ³⁶ Gaussian 03, Revisión B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
- R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
- Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.

Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.

C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gilí, B. Johnson, W. Chen, M. W. Wong, C. González, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, **2003.**

⁷ W. L. F. Armarego y D. D. Perrin, *Purification of Laboratory Chemicals*, Butterworth Heinemann, Cuarta Edición, Gran Bretaña, **1999.**

³⁸ SHEXTL 5.10 Bruker AXS, Inc. Madison. WI. USA, 1998.

³⁹ SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc. Madison, WI, **1996.**

⁴⁰ Gauss View Versión 2.06, Gaussian, Inc., Pittsburgh PA, USA.

⁴ a).- J. J. P. Stewart, J. Comp. Chem., 1989, 10, 209. b).- J. J. P. Stewart, J. Comp. Chem., 1989, 10, 221.

⁴ A. D. Becke, J. Chem. Phys., **1993, 98,** 5648.

⁴⁵ A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.*, **1993**, *80*, 1431.

⁴⁴ J. M. L. Martin, A. Sundermann, J. Chem. Phys., 2001, 114, 3408.

Capítulo 3 Estudio estructural de dibenzotritiaestanocinas

En el presente capítulo se describe la síntesis, el estudio estructural y el estudio de estructura electrónica de seis dibenzotritiaestanocinas (Figuras 3.1).

stanocina
2

Figura 3.1. Dibenzoestanocinas 6-11.

3.1 Antecedentes.

El estudio del aumento del número de coordinación del átomo de estaño a través de interacción intramolecular con un átomo donador (D \rightarrow Sn) ha sido ampliamente tratado en compuestos denominados estanocanos, **IIISn** (Figura 3.2), cuando el átomo donador es D = N, O, S (Para más detalles ver sección 1.5.2). La caracterización estructural mediante estudios de difracción de rayos X de monocristal de estos compuestos ha mostrado la existencia de interacciones intramoleculares transanulares entre los átomos D y Sn (Figura 3.2). Debido a la presencia de interacciones intramoleculares entre D \rightarrow Sn en los estanocanos el átomo de estaño aumenta su número de coordinación de tetracoordinado a penta- o hexacoordinado.¹¹¹²¹

A continuación se analizan y discuten los resultados obtenidos en el presente trabajo con respecto al estudio del aumento del número de coordinación del átomo de estaño presente en dibenzotritiaestanocinas.

3.2 Resultados y discusión.

3.2.1 Síntesis de los compuestos 6—11.

El ligante $S(C_6H_4SH)_2$ fue sintetizado de acuerdo al método reportado.²² La reacción de Ph₂SnCl₂ con el ligante $S(C_6H_4SH)_2$ a reflujo en benceno dio como resultado el complejo $S(C_6H_4S)_2$ SnPhCl (6); la misma reacción pero en diclorometano y en presencia del compuesto $C_6H_{12}N_2$ (l,4-diazabiciclo[2.2.2]octano) produjo el compuesto $S(C_6H_4S)_2$ SnPh₂ (9) (Ver detalles en la parte experimental). La reacción de $S(C_6H_4SH)_2$ con SnCl₄ a reflujo en benceno produce el compuesto $S(C_6H_4S)_2$ SnPh(S₂CNEt₂) (10). Los compuestos $S(C_6H_4S)_2$ SnPhBr (7), $S(C_6H_4S)_2$ SnPhI (8) y $S(C_6H_4S)_2$ SnPh(S₂CNEt₂) (11) fueron sintetizados a partir de 6 por el tratamiento de un exceso de KBr a reflujo en una mezcla de benceno/HBr, por la reacción a reflujo en benceno con un exceso de KI y NaS₂CNEt₂-3H₂O, respectivamente (ver esquema 3.1 y detalles en la parte experimental).

Esquema 3.1. Síntesis de las dibenzoestanocinas 6-11.

3.2.2 Espectrometría de masas de los complejos 6—10.

Los espectros de masas por EM-IE fueron obtenidos a 70 eV. Los espectros de los compuestos **6**, **7**, **9** y **10** muestran un fragmento con baja intensidad y con la relación isotópica esperada para el ion molecular $(S(C_6H_4S)_2SnL^1L^2)^{*+}(M^{*+})$. En los compuestos **6**-**9** se observan picos correspondientes a la pérdida de un ligante $M^{*+} - L^1 [L^1 = Cl (6), Br (7), I (8), Ph (9), Cl (10)] y$ es asignado al fragmento $S(C_6H_4S)_2SnL^2 [L^2 = Ph (6, 7, 8 y 9); L_2 = Cl (10)],$ un pico en 368 m/z que corresponde al fragmento $S(C_6H_4S)_2Sn y$ un pico en 248 m/z que corresponde al fragmento $S(C_6H_4)_2S$ Los demás picos presentes en los espectros no se lograron asignar, debido a que se presentan conjuntos más complejos de baja intensidad. En el esquema 3.2 se muestra la fragmentación de las dibenzoestanocinas **6-10**.

Esquema 3.2. Fragmentación de las dibenzoestanocinas 6-10.

3.2.3 Espectroscopia de Resonancia Magnética Nuclear.

3.2.3.1 Resonancia Magnética Nuclear de 'H de los complejos 6-11.

Los espectros de RMN de ¹ll de los compuestos **6-11** se obtuvieron en soluciones de CDCI₃ a temperatura ambiente y los desplazamientos químicos (δ) son relativos a TMS. Las asignaciones de todos los complejos fueron hechas con ayuda de experimentos en dos dimensiones heteronuclear y homonuclear (HETCOR, COLOC y COSY).

Los espectros de RMN de ¹H de los complejos muestran cuatro señales para los protones del anillo aromático en un patrón ABCD típico para anillos de benceno *orto*-sustituidos presentes en el sistema tricíclico; en los complejos **6-9** y **11** se observan además dos señales para los protones del grupo fenilo. En el espectro del compuesto **11** se observan dos conjuntos de señales a frecuencia baja que corresponden a los protones de los grupos etilo presentes en el ligante dietilditiocarbamato, presentando la multiplicidad esperada debido a los acoplamientos protón-protón. En solución los protones del grupo dietilditiocarbamato son equivalentes en los tiempos de RMN con un valor δ de 1.24 ppm (CH₃) y 3.65 ppm (CH₂). (Tabla 3.1 y figura 3.3). En todos los compuestos las dos mitades S(C₆H₄S)Sn son equivalentes en solución. En los complejos **6-11**, los protones H-1 y H-4 son desplazados a frecuencias más altas con respecto al ligante libre [S(C₆H₄SH)₂].²² En los complejos **6, 7, 8** y **11** el H-5 se encuentra desplazado a frecuencias más altas que las que presenta el Ph₂SnCl₂. El protón H-5 en **6, 7, 8, 9** y **11** muestra la presencia de satélites por acoplamiento es mayor que la que presenta el Ph₂SnCl₂: [³J(¹H — ¹¹⁹Sn) con un valor de 92-100 Hz] y la constante de acoplamiento es mayor que la que presenta el Ph₂SnCl₂: [³J(¹H — ¹¹⁹Sn) con un valor de 80 Hz, en CDCI₃]. En la figura 3.4 y 3.5 se ilustra el espectro de RMN de 'H y el espectro en dos dimensiones homonuclear COSY (¹H - ¹H) para el compuesto **8**, que es representativo para las dibenzotritiaestanocinas **6-11**.

 $L^{1} = Cl(6), Br(7), I(8), Ph(9), S_{2}CNEt_{2}(11)$ Figura 3.3. Numeración empleada para RMN de ¹H en los compuestos 6–11.

			ate	mperatura	amolente.				
Compuesto	Γ_1	L^2	H-1	H-2	H-3	H-4	H-5	H-6	H-7
S(C ₆ H ₄ SH) ₂	-	-	7.45-7.35	7.25-7.0	7.25-7.0	7.25-7.0	-	-	·_
Ph ₂ SnCl ₂	-	Ξ.	-	-	-	-	7.71	7.55	7.55
6	Cl	Ph	7.69	7.29	7.17	7.48	7.84	7.45	7.45
7	Br	Ph	7.68	7.29	7.17	7.45	7.82	7.43	7.43
8	Ι	Ph	7.68	7.29	7.16	7.43	7.77	7.41	7.41
9	Ph	Ph	7.71	7.22	7.12	7.42	7.66	7.37	7.37
10	Cl	Cl	7.71	7.39	7.27	7.54	-	-	_
11	Ph	S ₂ CNEt ₂	7.62	7.21	7.08	7.48	7.90	7.36	7.36

Tabla 3.1. RMN de ¹H desplazamiento químico (δ en ppm) para 6–11 en CDCl₃

Figura 3.4. Espectro de RMN de ¹H del compuesto **8**, en CDCl₃ a temperatura ambiente.

Figura 3.5. Espectro homonuclear en dos dimensiones COSY [$^{1}H^{-1}H$] del compuesto 8, en CDCl₃ a temperatura ambiente.

3.2.3.2 Resonancia Magnética Nuclear de ¹³C de los complejos 6-11.

Los espectro de RMN de ¹³C{¹H} para los complejos **7**, **8** y **9** muestran diez señales en la región aromática a temperatura ambiente de las cuales seis señales pertenecen al anillo orto disustituido del sistema dibenzoestanocina [S(C₆H₄S)₂Sn] y las otras cuatro al grupo fenilo unido al estaño (SnC₆H₅), respectivamente. El espectro del compuesto **10** muestra seis señales para los carbonos del anillo bencénico lo cual nos indica que las dos mitades del sistema dibenzoestanocina [S(C₆H4S)2Sn] son equivalentes. Por otra parte, los espectros de los compuestos **6** y **11** a temperatura ambiente muestran solamente nueve señales en la región aromática; cuando se aumenta la temperatura a 60 °C se observan las diez señales esperadas en esta región.No se observaron cambios significativos en el valor del desplazamiento químico (δ) con respecto al aumento de la temperatura. El espectro de **11** a 60°C presenta además de las diez señales en la región aromática, una señal en 197.6 ppm que corresponde al carbono unido al átomo de nitrógeno del grupo del dietilditiocarbamato (S₂CNEt₂) y dos señales a frecuencia baja que corresponden a los dos fragmentos metileno y metilo presentes en el grupo dietilditiocarbamato, con un valor 8 de 51.1 ppm (CH₂) y 12.0 ppm (CH₃).

En los complejos **6-11** el carbono *ipso* C-4a y el carbono *ipso* C-5a en **6**, **7**, **8**, **9** y **11** se desplazan a frecuencias más altas con respecto a los reactivos de partida $[SC_6H_4SH)_2$ y Ph₂SnCl₂]. La diferencia entre desplazamientos químicos reactivos de partida $[S(C_6H_4SH)_2$ y Pb₂SnCl₃, en CDCl₃] y los complejos se define como $\Delta\delta$ Así, el $\Delta\delta$ para C-la y C-5a en **6** es de 8.4 y 4.1 ppm; para 7 es de 8.6 y 4.2 ppm; para **8** es de 8.7 y 3.8 ppm; para **9** es de 8.0 y 5.3 ppm; para **10** es de 6.6 para C-4a, y para **11** es de 12.7 y 13.1 ppm, respectivamente. La asignación de C-5, C-5a, C-6 y C-7 se llevó a cabo con apoyo de los desplazamientos informados para compuestos trifenilados de Sn(IV).²³

Los espectros de RMN de ¹³C {¹H} de los compuestos muestran también la presencia de satélites debidas a acoplamientos con ¹¹⁹Sn. En la tabla 3.2 se presentan los valores del δ y las constantes de acoplamiento con Sn encontradas para los compuestos **6-11**, la numeración empleada se muestra en la figura 3.6. La asignación de los carbonos cuaternarios se realizó con ayuda de experimentos APT. En las figuras 3.7 y 3.8 se ilustra el espectro de RMN de ¹³C y el espectro en dos dimensiones heteronuclear HETCOR [¹³C - *H] para el compuesto **8**, que son representativos para las dibenzotritiaestanocinas.

 $L^1 = Cl(6), Br(7), I(8), Ph(9), S_2CNEt_2(11)$ Figura 3.6. Numeración empleada para RMN de ¹³C en los compuestos 6–11.

Compuesto	L^1	L ²	C-1	C-2	C-3	C-4	C-1a	C-4a	C-5	C-5a	C-6	C-7
S(C6H4SH)2	-	-	132.4	128.3	126.6	130.2	135.0	132.5				-
Ph ₂ SnCl ₂	-	-						÷	135.2 $^{2}J=60$	137.1	129.8 ³ J=80	131.9 ⁴ J=24
6	Cl	Ph	132.4 3.J=45	130.4	127.0	133.6		140.9 ³ ,J=27	134.7 ² . <i>J</i> =64	141.2	129.6 ³ .J=96	131.3
6*	Cl	Ph	132.3 $^{3}J=45$	130.3	126.9	133.6	130.7	141.6 ³ J=27	134.6 ² J=64	141.2	129.5 J=96	131.2
7	Br	Ph	132.2 ³ J=40	130.4	127.0	133.7	130.6	141.1	134.6 ² <i>J</i> =65	141.3	129.5 ³ J=90	131.3
8	1	Ph	131.9 $^{3}J=40$	130.3	127.1	133.8	131.0	141.2 ³ J=31	134.2 ² J=65	140.9	129.4 ³ <i>J</i> =92	131.2
9	Ph	Ph	133.3 ³ J=28	129.0	126.6	133.8	134.8	$^{140.5}_{3J=24}$	135.5 ² J=50	142.4	128.9 ³ <i>J</i> =65	129.9 ⁴ <i>J</i> =15
10	Cl	Cl	131.8 ³ <i>J</i> =69.	131.1	127.8	133.6	130.0	139.1 ³ J=35	2	-	-	-
11	Ph	S ₂ CNEt ₂	133.9 ³ <i>J</i> =40	129.2	125.5	132.9	134.9	$^{145.0}_{J=20}$	133.8 ² J=30		128.6 ³ J=40	129.4
11*	Ph	S ₂ CNEt ₂	132.9 ³ <i>J</i> =40	129.0	125.4	132.9	135.0	145.2 ³ <i>J</i> =20	133.8 ² J=30	150.2	128.5 ³ <i>J</i> =40	129.3

Tabla 3.2. RMN de ${}^{13}C{}^{1}H$ desplazamiento químico (δ en ppm), constante de acoplamiento con 119 Sn a n enlaces $[{}^{n}J({}^{119}{}_{\text{Sn}},{}^{13}{}_{\text{C}})$, en Hz] para 6 – 11, en CDCl₃, a temperatura ambiente.

* a 60°C

Figura 3.7. Espectro de RMN de 13 C del compuesto 8, en CDCl₃ a temperatura ambiente.

Figura 3.8. Espectro heteronuclear en dos dimensiones HETCOR [13 C - 1 H] del compuesto 8, en CDCl₃ a temperatura ambiente.

3.2.3.3 Resonancia Magnética Nuclear de ¹¹⁹Sn de los complejos 6-11.

Los espectros de RMN de¹¹⁹Sn de los compuestos 6-11 se obtuvieron en soluciones de CDCl₃ a temperatura ambiente. Los espectros de los compuestos 6-11 muestran solamente una señal sencilla; en la tabla 3.3 se muestran los valores del 8 de ^{li9}Sn. El valor del δ de ^{l19}Sn para el compuesto 6 está a frecuencias más bajas con respecto al reactivo de partida Ph₂SnCl₂ (-26.3 ppm en $CDGl_3$ ²⁴ mientras que el del compuesto difenilado **9** es muy cercano a él. El desplazamiento encontrado en 7 se encuentra desplazado a frecuencia más baja que el informado para Ph₃SnBr (-59.8 ppm en CDCl₃)²⁴ y para Ph₂SnBr₂ (-75.0 ppm en CD₂Cl₂).²⁴ El valor del δ encontrado para 8 está desplazado hacia frecuencias aún más bajas que el informado para Ph₃Snl (-112.8 ppm en CDCI3).²³ Con base en los resultados obtenidos y la comparación del δ de ¹¹⁹Sn con otros compuestos que en su estructura contienen al átomo de estaño enlazado con diferentes elementos (halógenos) indica que el cambio en el δ de ¹¹⁹Sn en los compuestos **6-11** no es solo debido al efecto de la naturaleza de los sustituyentes sino también al número de sustituyentes que presenta el átomo de estaño. En la literatura se describe que el δ^{-119} Sn en solución se desplaza a frecuencias bajas con el aumento en el número de coordinación.^{23,24} En este sentido han sido propuestos intervalos de desplazamiento químico para sistemas con diferentes números de coordinación.^{23,24} En el presente estudio se utilizan los intervalos propuestos por Dakternieks et al,²⁴ para sistemas donde el átomo de estaño se encuentra coordinado con ligantes del tipo ditiocarbamato. El desplazamiento químico de ¹¹⁹Sn va de

+120 a -145 ppm para átomos de estaño tetracoordinados, de -150 a -250 ppm para átomos de estaño pentacoordinados y de -300 a -500 ppm para átomos de estaño hexacoordinados.

Con base en estos intervalos, se propone que los compuestos 6, 7 y 9 en solución contienen al átomo de estaño tetracoordinado, mientras que en 8 y 10 se encuentra pentacoordinado y por último, en 11 se encuentra hexacoordinado.

a temperatura ambiente.											
Compuesto	6	7	8	9	10	11					
δ (¹¹⁹ Sn)	-63.4	-95.1	-180.8	-18.4	-142.8	-322.6					

Tabla 3.3. RMN ¹¹⁹Sn desplazamiento químico (δ en ppm) para 6–11 en CDCl₃

El cambio del desplazamiento químico a frecuencias más bajas para los compuestos **8** y **10** se debe al cambio en el número de coordinación de cuatro a cinco y se puede explicar por la existencia de una interacción intramolecular entre el átomo de azufre del tipo tioéter y el átomo de estaño ($S \rightarrow Sn$). Para el caso de los compuestos **6**, **7** y **9** en solución el átomo de estaño se encuentra tetracoordinado, indicando que la interacción intramolecular es muy débil o nula. El desplazamiento químico de ¹¹⁹Sn en solución para **11** nos indica que el átomo de estaño se encuentra hexacoordinado. Esta hexacoordinación puede ser explicada por la formación de un enlace estaño-carbono, dos enlaces estaño-azufre(tiolato), dos más con el ligante dietilditiocarbamato que se comporta como un ligante bidentado uno adicional debido a la existencia de una interacción intramolecular ($S \rightarrow Sn$). Los experimentos de RMN de ¹¹⁹Sn para los compuestos **6**-**11** a 60 °C no mostraron cambios significativos en el desplazamiento químico. En la figura 3.9, se muestra el espectro heteronuclear HETCOR [¹H-¹¹⁹Sn] para el compuesto **8** obtenido con una ³J(¹H — ¹¹⁹Sn) de 96 Hz. Debido a la correlación con dos señales en este espectro se observa que la constante a cuatro enlaces es similar a la de tres.

Figura 3.9. Espectro heteronuclear en dos dimensiones HETCOR [¹H - ¹¹⁹Sn] con una constante de acoplamiento de 96 Hz para el compuesto **8**, en CDCl₃ a temperatura ambiente.

3.2.4 Estudios de difracción de rayos X de monocristal de los complejos 6-11.

Las estructuras cristalinas y moleculares en estado sólido de los complejos **6-11** fueron determinadas por difracción de rayos X de monocristal, la celda unitaria de los compuestos **10** y **11** muestra la existencia de dos moléculas cristalográficamente independientes. Los datos cristalográficos correspondientes a la estructura para los compuestos **6-11** se muestran en la tabla 3.4.

A continuación se analizan las estructuras moleculares de cada uno de los complejos sintetizados en función de parámetros geométricos tales como distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°).

Compuesto	6	7	8	9	10	11
Fórmula	C18H13CIS3Sn	C18H13BrS3Sn	C ₁₈ H ₁₃ IS ₃ Sn	C24H18S3Sn	C12H8C12S3Sn	C ₂₃ H ₂₃ NS ₅ Sn
M [g/mol]	479.60	524.06	571.05	521.25	437.95	592.41
Tamaño (mm)	0.45×0.3×0.15	0.5×0.3×0.12	0.25×0.17×0.07	0.60×0.3×0.14	0.56×0.3×0.09	0.35×0.4×0.5
Sistema cristalino	Monoclínico	Monoclínico	Monoclínico	Triclínico	Triclínico	Triclínico
Grupo espacial	P2(1)/c	P2(1)/c	P2(1)/c	P-1	P-1	P-1
$\rho_{\rm calc}$ (Mg m ⁻³)	1.714	1.833	1.936	1.588	1.881	1.549
Z	4	4	4	2	4	4
a (Å)	9.984(1)	9.9795(9)	10.0005(5)	9.9619(8)	10.713(1)	10.2910(5)
b (Å)	10.346(1)	10.5556(8)	10.8314(5)	10.3246(9)	12.170(2)	15.7117(8)
c (Å)	18.298(1)	18.334(2)	18.3957(9)	11.262(1)	12.268(2)	17.1812(9)
α (deg)	90	90	90	73.151(2)	88.048(3)	70.935(1)
β (deg)	100.469(2)	100.496(2)	100.469(1)	79.617(2)	89.735(3)	76.262(1)
γ (deg)	90	90	90	88.713(2)	75.314(3)	80.623(1)
V	1858.6(2)	1899.0(3)	1959.4(2)	1089.9(2)	1546.3(3)	2539.5(2)
μ (mm ⁻¹)	1.851	3.775	3.195	1.467	2.381	1.428
F(000)	944	1016	1088	520	848	1192
GooF	0.919	0.864	1.021	0.997	0.993	1.107
Corrección abs.	SADABS	SADABS	SADABS	SADABS	SADABS	SADABS
Reflexiones colectadas	12114	12275	12772	7279	9943	18784
Reflexiones	3666	3711	3849	4256	6119	9943
únicas, R _{int}	0.0683	0.0606	0.0356	0.0200	0.0479]	0.0273
R1, wR2	0.0357,	0.0383,	0.0228 0.0840	0.0294,	0.0591,	0.0405,
[l>2σ(I)]	0.0735	0.0776	0.0328, 0.0849	0.0695	0.1631	0.1269
R1, wR2 (todos	0.0561,	0.0784,	0.0462.0.0011	0.0388,	0.0989,	0.0539,
datos)	0.0793	0.1089	0.0405, 0.0911	0.0726	0.1843	0.1645
Final Δρ, max/min (e Å ⁻³)	0.828/ -0.606	0.655/ -0.777	0.414/ -1.204	0.320/ -0.463	1.225/ -0.874	0.673/ -1.072

Tabla 3.4. Datos cristalográficos correspondientes a las estructuras de los complejos 6-11.

3.2.4.1 Estructura molecular de los compuestos 6—11.

En la figuras 3.10 y 3.11 se muestra la estructura molecular de los compuestos **6-11**, señalando la numeración empleada. En la tabla 3.5 se presentan los valores de las distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los complejos **6-11**.

Figura 3.10. Estructura molecular de los compuestos 6-9 (ORTEP al 50% de probabilidad).

Compuesto	6	7	8	9	10a	10b	11a	11b
L ¹	CI1	Br1	11	C19	Cl1	CI3	C13	C36
L ²	C13	C13	C13	C13	CI2	Cl4	S4, S5	S9, S10
D	S3	S3	S3	S3	S3	S6	S3	S8
D→Sn	2.827(1)	2.834(2)	2.840(1)	3.162(9)	2.735(2)	2.725(2)	2.824(1)	2.872(1)
Sn-S1	2.407(1)	2.416(2)	2.415(1)	2.437(9)	2.394(2)	6 .	2.500(1)	-
Sn-S2	2.404(1)	2.409(2)	2.405(1)	2.425(9)	2.399(3)	-	2.496(1)	-
Sn-S4	7. . -2		-	-	-	2.398(3)	2.592(1)	-
Sn-S5	20 — 3	2-22	~	2 - 2	-	2.396(2)	2.559(1)	-
Sn-S6	2. 2	1.712	-		-	-	-	2.475(2)
Sn-S7	-	-	-	0.75	-	-	=	2.502(1)
Sn-S9	-	-	-	-	-	-	-	2.611(2)
Sn-S10	51 2 5	1211	-		-	-	-	2.558(1)
Sn-L ¹	2.397(1).	2.547(8)	2.742(5)	2.151(3)	2.361(3)	2.359(3)	2.152(5)	2.163(5)
Sn-L ²	2.118(4)	2.121(7)	2.130(5)	2.138(3)	2.341(3)	2.348(3)	-	-
D→Sn-L ¹	166.9(4)	167.9 (5)	169.0(3)	164.6(8)	176.3(1)	175.3(1)	171.0(1)	172.5(2)
D→Sn-L ²	91.6(1)	90.7(2)	89.7(1)	84.0(8)	86.0(1)	88.1(1)	-	-
D→Sn-S1	76.9(4)	77.1(6)	77.1(4)	72.6(3)	82.41(8)	-	74.96(5)	
D→Sn-S2	79.28(4)	79.4(6)	79.3(4)	68.2(3)	79.22(9)	-	75.94(4)	-
D→Sn-S4	11 - 1	-	-	-	-	79.5(1)	84.11(4)	-
D→Sn-S5	31 - 4	-	2	11 <u>2</u> 0	-	83.2(1)	89.11(4)	
D→Sn-S6	-	-	~	-	121	- 1		74.16(5)
D→Sn-S7)) — ()	-	-		-	-	-	75.23(4)
D→Sn-S9	(c -)	-	-		-	-	-	92.04(5)
D→Sn-S10	30 0 5	-	-	-	-	-	-	83.75(5)
S1-Sn-S2	112.8(4)	112.3(7)	111.6(5)	111.0(3)	122.4(1)	-	102.66(5)	-
S4-Sn-S5	-	-	-	-	-	127.5(1)	69.80(4)	-
L ¹ -Sn-L ²	101.0(1)	100.9(2)	100.9(1)	111.3(1)	97.4(1)	96.6(1)	-	
S1-Sn-L ¹	98.5(4)	98.8(5)	99.4(3)	104.3(1)	97.4(1)	-	101.5(1)	
S1-Sn-L ²	123.7(1)	123.2(2)	122 0(1)	118 9(9)	115 8(1)			

Tabla 3.5. Distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) mas relevantes para los compuestos 6-11.
Continuación tabla	3.5 6	7	8	9	10a	10b	11a	11b
S1-Sn-S4	-	-	-	-	-	-	151.78(5)	-
\$1-Sn-S5	-	-	(h -))	-	~	-	89.98(5)	-
S2-Sn-L ¹	91.5(4)	91.9(5)	92.6(3)	99.1(9)	97.8(1)	22 0 0	97.1(1)	-
S2-Sn-L ²	118.9(1)	119.7(2)	121.0(1)	99.1(9)	116.7(1)	2077	277.2	~
S2-Sn-S ⁴	-	-	-	-	-	-	91.2(4)	7 .
S2-Sn-S⁵	-	-	-	-	-	-	156.93(5)	
S4-Sn-L ¹	-	-	-	-	H	98.4(1)	101.1(1)	-
S4-Sn-L ²	-	-	-	-	-	111.5(1)	-	-
S5-Sn-L1	~	-	1	7 - 7	-	95.0(0)	99.3(1)	-
S5-Sn-L ²	-	-	5 - 20	-	-	117.0(1)	-	
S6-Sn-S7	~	-	-	-	<u>~</u>	-	-	102.6(6)
S6-Sn-S9	-	-	-	-	-	-		91.47(6)
S6-Sn-S10	-	-	-	-	<i>~</i>	-	-	150.45(6
S7-Sn-L1	-	-	-	-	-	-	-	99.8(1)
S7-Sn-S9		-	-		-	-	-	157.38(5
S7-Sn-S10	-	-	-	-	-		-	90.18(5)
S9-Sn-L1	-	-		-	-	-		94.5(2)
S9-Sn-S10	-	-	-	-	-	-	-	69.60(5)
C6-D-C7-C12	-73.6(4)	-74.8(6)	-75.5(4)	-65.2(3)	-135.4(8)	-	-69.8(4)	-
C7-D-C6-C1	130.1(3)	128.9(6)	127.5(4)	132.0(2)	81.3(9)	1000	132.8(4)	-
S1-Sn-S2-C12	98.4(1)	98.3(2)	98.9(2)	-9.9(1)	36.4(5)	-	108.3(2)	
S2-Sn-S1-C1	-31.8(2)	-33.3(3)	-34.2(2)	92.6(1)	-96.4(3)		-31.4(2)	-
C18-D-C19-C24	-	-	-	-	-	136.4(7)		-
C19-D-C18-C13	-	-	-	-	-	-87.3(8)	-	-
S4-Sn-S5-C24	2	-	-	-	-	85.4(3)	-	7
S5-Sn-S4-C13	-	-	-	-	-	-37.4(4)	-	-
C29-D-C30-C35	-	а 2	0.201	_	-	-	-	-65.0(5)
C30-D-C29-C24	-	<u>ت</u>	120	8 <u>11</u> 15	-	-	-	131.8(4)
S6-Sn-S7-C35	-	-	- <u>-</u>	-	-	_	-	106.6(2)
S7-Sn-S6-C24	-	-	-	-	-		12	-28.6(2)

La estructura molecular de los compuestos **6-10** muestra que las distancias Sn-S(tiolato) son semejantes con las informadas para otros heterociclos de ocho miembros y otros compuestos que en su estructura contienen enlaces estaño-azufre: [2.428(2) Å en **IIISn9**,⁶ 2.398(2) Å y 2.406(3) Å en **IIISn23**,¹⁶ 2.381(7) Å y 2.388(9) Å en **IHSn19**,¹¹ 2.393(2) Å y 2.393(2) Å en **IIISn20**,¹¹ 2.396(1) Å y 2.390(1) Å en **IIISn21**,¹¹ 2.405(1) Å **IIISn18**,¹¹ 2.401(1) Å y 2.410(1) Å en mSn38,ⁿ 2.404(2) Å y 2.413(2) Å en **IIISn39**,ⁿ 2.435(1) Å en **HISn37**,¹¹ 2.369(3) Å en **IIISn34**,⁶ 2.397(2) Å y 2.400(2) Å en **IIISn35**,²⁵ 2.393(2) Å y 2.402(2) Å en **IIISn36**,²⁵ 2.397(2) Å y 2.398(2) Å en **HISn42**,¹⁸ 2.407(2) Å a 2.434(2) Å en **IIISn33**.¹⁸ 2.396(2) Å y 2.384(2) Å en **IIISn41**,¹³ 2.413(2) Å y 2.406(2) Å en **IIISn40**,² 2.408(3) Å a 2.443(3) Å en **IIISn48**,²⁶ 2.415(2) Å y 2.410(4) A en **IIISn30**,¹⁸ 2.4163(19) A y 2.4017(19) A en **IIISn44**,¹⁸ 2.405(3) Å a 2.423(3) Å en {(Me)₂SnS}₃,²⁷ 2.389(2) Å a 2.417(1) Å en {Ph₂SnS}₃.²⁸

Las distancias estaño-cloro en **6** y **10** son 0.5 a 3.0% más largas que las informadas para un enlace covalente Sn-Cl (2.33 Å en SnCU),² la distancia Sn-Cl en 6 es ligeramente más corta que la encontradas en el estanocano análogo [2.453(1) Å en **HISn41]**,¹³ las distancias Sn-Cl en **10** son del mismo orden que las encontradas en el estanocano análogo [2.392(3) Á y 2.348(3) Á en **HISn34]**.⁶ En el compuesto **10** la distancia más larga Sn-Cl es la ubicada en posición axial y la distancia más corta Sn-Cl en posición ecuatorial. Estas distancias son ligeramente más largas que las encontradas en la materia prima Ph₂SnCl₂ (2.337(2) Å y 2.357(2) Å).³⁰⁻³²La distancia Sn-Br en **6** es un 4% más larga que la encontrada para el SnBr4 (2.46 Å)²⁹ y es similar a las encontradas en estanocanos con enlaces Sn-Br en posición axial [2.545(3) A en **HISn35** y 2.582(1) Å en **HISn39**]^{25,11} La distancia Sn-I en **7** es un 2% más larga que la observada para SnL; (2.69 Å)²⁹ y más corta que la encontrada para estanocanos con enlaces Sn-I en posición axial [2.786(2) A **HISn36**].²⁵ Las distancias Sn-C son similares a las encontradas en otros compuestos que contienen enlaces estaño-carbono y en el Ph₂SnCl₂.^{11,25,33,-35}

La estructura molecular de los compuestos **6-10** muestra que tomando en consideración únicamente los enlaces covalentes Sn-S, Sn-L¹ y Sn-L² [L¹ = Cl (**6** y **10**), Br (**7**), I (**8**), Ph(**9**); L² = Ph (**6**, **7**, **8** y **9**); Cl (**10**)], el átomo de estaño se encuentra tetracoordinado con geometría tetraédrica.

La estructura molecular de los compuestos **6-10** muestra en adición a las distancias de enlace de los cuatro enlaces covalentes esperados para el átomo de estaño, una distancia corta que implica la existencia de una interacción intramolecular (S \rightarrow Sn). Las distancias de la interacción intramolecular transanular S \rightarrow Sn tienen valores de 2.827(1) Å en 6, 2.834(2) Å en 7, 2.840(1) Å en 8, 3.162(9) Å en 9, 2.735(2) Å en **10a** y 2.725(2) Å en 10b, y son más largas que la suma de los radios covalentes de S y Sn [$\Sigma r_{COV}(S,Sn) = 2.43$ Å]³⁶⁻³⁸ en un 16.3, 16.6, 16.9, 30.1, 12.6 y 12.1 %, la magnitud de estas distancias es consistente con la existencia de un enlace secundario³⁶

Las distancias S \rightarrow Sn en los compuestos 6, 7, 8, 9, 10a y 10b son más cortas que las reportadas en HISn37 3.514(1) Å,¹¹ en el espirociclo IIISn47 3.241(3) y 3.074(3) Å,¹⁹ en IIISn40 3.246(1) Å,² en IIISn43 3.175(1) Å,¹⁸ en IIISn45 2.982(2) Å,¹ en IIISn44 2.940(7) Å,¹ en IIISn46 3.027(l)Å,¹ en IIISn38 2.863(1) Å,¹¹ en IHSn41 2.866(1) Å,¹³ IIISn39 2.835(2) Å,¹¹ en IIISn36

2.779(2) Å,²⁵ en **HISn35** 2.767(2) Å,²⁵ en **HISn34** 2.760(3) Å,⁵ en **HISn42** 2.785(1) Å¹⁸ y en **HISn14** 2.779(2) Å.²⁰

Tomando en consideración los cuatro enlaces covalentes y la interacción intramolecular S \rightarrow Sn en las dibenzoestanocinas 6-10, el átomo de estaño experimenta un aumento en su número de coordinación de cuatro a cinco con un desplazamiento en su geometría de coordinación de tetraédrica a bipirámide trigonal (BPT), donde las posiciones axiales están ocupadas por los átomos de halógeno (para 6, 7, 8 y 9), el átomo de carbono *ipso* del grupo fenilo (para 9) y el átomo de azufre (tioéter) mientras que las posiciones ecuatoriales son ocupadas por los átomos de azufre del tipo tiolato, el átomo de carbono *ipso* del grupo fenilo (para 6, 7, 8 y 9) y el átomo de carbono *ipso* del grupo fenilo (para 10).

Con el aumento del número de coordinación del átomo de estaño en las dibenzoestanocinas **6-10** y con la finalidad de aumentar aún más el número de coordinación de cuatro a seis fue preparada la dibenzoestanocina **11.** En este compuesto fue introducido el ligante dietilditiocarbamato (S₂CNEt₂) el cual tiene un carácter potencialmente bidentado. Del estudio previo en solución de RMN de Sn en un disolvente no coordinante (CDCl₃) se observó que el δ de ¹¹⁹Sn se desplaza a frecuencias más bajas mostrando una señal sencilla en -322.6 ppm (ver tabla 3.3) que se encuentra en el intervalo para un átomo de estaño hexacoordinado (-300 a -500 ppm).²⁴ Lo anterior es confirmado por el análisis de difracción de rayos X de monocristal en estado sólido, la celda unitaria del compuesto **11** contiene dos moléculas cristalográficamente independientes **11a** y **Ilb** que son prácticamente superponibles entre sí (Ver figura 3.12), la única diferencia entre las dos moléculas es la orientación de los anillos aromáticos los cuales son perpendiculares uno con respecto al otro.

Figura 3.12. Dos vistas de la superposición de las estructuras moleculares de **11a** (línea continua) y **11b** (línea punteada) obtenidas por difracción de rayos X de monocristal.

En la estructura molecular de **l1a** y **llb** se observa al átomo de estaño hexacoordinado con geometría octaédrica. Las distancias Sn-S(tiolato) [2.500(1) y 2.496(1) Å en **lia**, 2.475(2) y

2.502(1) Å en **llb**] son más largas que las encontradas para los compuestos **6-10** (Ver tabla 3.6), y similares a las encontradas en $P(C_6H_4S)_3SnPh^{39}$ [2.4972(12), 2.4883(14) y 2.4873(14) Å]. Esta elongación de los enlaces Sn-S(tiolato) es debida al cambio de geometría del átomo de estaño. Los enlaces Sn-S(dietilditiocarbamato) con distancias 2.559 (1) y 2.592(1) Å en **l1a**, 2.558(1) y 2.611 (2) Å en **l1b** y los enlaces **Sn-S(tiolato)** 2.500(1) y **2.496(1)** Å en **l1a**, 2.475(2) y 2.502(1) Å en **llb** son mayores a la suma de los radios covalentes [Σr_{cov} (S,Sn) = 2.43 Å].³⁶⁻³⁸

Con respecto al modo de coordinación del ligante es conveniente analizar las distancias de enlace Sn-S(dietilditiocarbamato) y C-S(dietilditiocarbamato). Por una parte, se encuentra que las distancias Sn-S son apenas significativamente diferentes (dentro del criterio de 3σ) y, por otra, se encuentra que las distancias C-S (intervalo de 1.729(2) a 1.733(1) Å comprendido entre la longitud de enlace doble C=S y enlace sencillo C-S 1.60 y 1.82 Å) son iguales. No obstante esta discrepancia, se puede considerar que el ligante dietilditiocarbamato presenta un modo de coordinación isobidentado con un ángulo de mordida de $69.80(4)^{\circ}$ en **11a** y de $69.60(5)^{\circ}$ en **11b**, estos ángulos de mordida son similares a los encontrados en diferentes compuestos donde el ligante dietilditiocarbamato actúa como un ligante bidentado.²⁴ En estas moléculas los átomos de azufre del tipo ditiolato y del tipo ditiocarbamato se encuentran aproximadamente en un plano; perpendicular a éste se encuentran las posiciones axiales que son ocupadas por el átomo de S(tioéter) y el carbono *ipso* del grupo fenilo, el ligante S(C₆H₄S)₂ se encuentra coordinado de forma facial.

La distancia de la interacción intramolecular S^-Sn en **lia** y **llb** tiene valores de 2.824(1) y 2.872(1) A, respectivamente, las cuales son más largas que la suma de los radios covalentes de S y Sn $[Ir_{cov} (S,Sn) = 2.43 \text{ A}]^{36_{m}38}$ en un 16.2 y 18.2 %, respectivamente, la magnitud de estas distancias es consistente con la existencia de un enlace secundario.³⁶

Considerando el aumento del número de coordinación que experimenta el átomo de estaño en las dibenzoestanocinas **6** - **10** es importante estimar el grado de desplazamiento de tetracoordinado con geometría ideal tetraédrica a pentacoordinado con geometría ideal de BPT. El grado de desplazamiento es calculado utilizando diferentes criterios como: a) El criterio de la distancia de la interacción D \rightarrow A propuesto por Holmes *et al*^{40,41,42}b) El criterio mediante el uso de los seis ángulos de un tetraedro desarrollado por Draeger *et al*^{25,43} c) El criterio de la medida de la distancia del átomo central (Đ) con respecto al plano formado por las tres posiciones ecuatoriales, ^{11'44,45} Los resultados obtenidos son mostrados en la tabla 3.6.

Por otro lado para poder establecer la magnitud de la interacción intramolecular $S \rightarrow Sn$ fue utilizado el criterio de orden de enlace *(oe)* intramolecular propuesto Pauling⁴⁶ obtenido a través del incremento de la distancia entre los átomos S->Sn. Los resultados obtenidos son mostrados en la tabla 3.6.

ř	-	L	(°)	Sn-L ⁴ (Å)	S→Sn (Å)	BPT ^a (%)	$\Delta \theta^{b}$ (°)	$\begin{array}{c} \mathcal{D}^c \\ (\mathrm{\AA}) \end{array}$	oe ^d Sn-L ¹	S→Sn (Å)	oe ^d S→Sn
0	Cl	Ph	166.9(4)	2.397(1)	2.827(1)	74.1	64.3	0.288	1.009	0.397	0.275
7	Br	Ph	167.9 (5)	2.547(8)	2.834(2)	73.6	63.3	0.295	1.009	0.404	0.269
8	Ι	Ph	169.0(3)	2.742(5)	2.840(1)	73.2	61.7	0.311	0.993	0.410	0.264
9	Ph	Ph	164.6(8)	2.151(3)	3.162(9)	52.2	25.6	0.606	1.095	0.732	0.093
10a	Cl	Cl	176.3(1)	2.361(3)	2.735(2)	80.1	62.3	0.312	1.135	0.305	0.372
10b	Cl	Cl `	175.3(1)	2.359(3)	2.725(2)	80.7	66.1	0.275	1.142	0.295	0.384
11a	Ph	S2CNEt2	171.0(1)	2.152(5)	2.824(1)	-	-	-	1.095	0.394	0.278
11b	Ph	S ₂ CNEt ₂	172.5(2)	2.163(5)	2.872(1)	-	20	-	1.056	0.442	0.238
$\frac{11a}{11b}$ Si S \rightarrow Sn = Σ_{I} $\Sigma_{r_{veW}}(S,Sn) =$ $\Delta \theta = \Sigma \theta_{eq} - \Sigma$ Si $D = 0.71$ Å	Ph Ph $V_{odw}(S)$ 3.96μ $\Sigma \theta_{ax}$, T_{ax} la geo	CI S ₂ CNEt ₂ S ₂ CNEt ₂ →Sn) la gen Å], [Σr _{cov} (S, si Δθ = 0° ometría es T	173.3(1) 171.0(1) 172.5(2) ometria tiene Sn) = 2.43 Å la geometria G_4 , si $D = 0.0$	2.359(5) 2.152(5) 2.163(5) carácter de]. ³⁶⁻³⁸ i es T _d , si Δi 0 Å la geon	$2.725(2)$ $2.824(1)$ $2.872(1)$ $T_{d}, si S \rightarrow S$ $\theta = 90^{\circ} la ge$ netria es BPT	$n = \Sigma r_{cov}$ ometria c	$(S \rightarrow Sn)$ es BPT. ²⁵	0.275 - - la geome	1.142 1.095 1.056 tría tiene	0.295 0.394 0.442 carácter d	0 0.1 0.1

 ${}^{d}oe = 10^{-(1.41 \, \Delta d)} {}^{46} , \\ {}^{e}\Delta d = (d_{exp} - \Sigma r_{cov}), {}^{46} [\Sigma r_{cov}(S,Sn) = 2.43 \text{ Å}], [\Sigma r_{cov}(Sn,Cl) = 2.40 \text{ Å}], [\Sigma r_{cov}(Sn,Br) = 2.55 \text{ Å}], [\Sigma r_{cov}(Sn,l) = 2.74 \text{ Å}], [\Sigma r_{cov}(Sn,C) = 2.18 \text{ Å}].$

El análisis del los valores de porcentaje de desplazamiento BPT %, $\Delta \theta$, D > y orden de enlace *(oe)* muestran que la fuerza de la interacción intramolecular S→Sn en 6, 7, 8, 9 y 10 disminuye de acuerdo al siguiente orden: 10 > 6 > 7 > 8 > 9, es decir, el compuesto que presenta la distancia más corta S^Sn es el compuesto diclorado 10 [2.735(2) y 2.725(2) Å que presenta en estado sólido dos moléculas cristalográficamente independientes] y el compuesto que presenta la distancia más larga S→Sn es el compuesto difenilado 9 [3.162(9) Å]. En esta serie de compuestos, la fuerza de la interacción intramolecular S→Sn en 6, 7, 8, 9 y 10 aumenta con el incremento en la electronegatividad del ligante en posición axial [Cl > Br > I = C].⁴⁷ Las dibenzoestanocinas que contienen halógenos como ligante exocíclico presentan el mayor valor de grado de desplazamiento de carácter de BPT (intervalo de 80.7 a 73.2 %) con valores de $\Delta\theta$ en el intervalo de 66.1 a 63.3 (valores cercanos a 90 para una BPT ideal). El análisis del *oe* también apoya la existencia de una interacción intramolecular $S \rightarrow Sn$. Lo anterior indica que la presencia de ligantes electronegativos en posición axial unidos al átomo de estaño favorece el aumento del número coordinación del átomo de estaño aumentando su carácter ácido mientras que la presencia de los dos grupos fenilo unidos al átomo de estaño reducen su acidez lo cual disminuye su capacidad para aumentar su número de coordinación. El oe calculado para S->Sn en las moléculas lla y llb es similar al encontrado en los compuestos 6, 7 y 8, menor que el calculado para las moléculas 10a y 10b y mayor que el calculado para 9.

La conformación que adopta el anillo de ocho miembros en las dibenzoestanocinas **6-11** se puede describir como bote torcido con simetría C_1 .^{48,49} Esta descripción está basada en la no equivalencia de los ángulos de torsión, la figura 3.13 muestra los valores de los ángulos de torsión para las dibenzotritiaestanocinas **6-11**. Los ángulos de torsión más relevantes para el presente análisis son los formados por los sistemas C-S-Sn-S y C-S-C-C para las dos mitades del anillo. Las diferencias encontradas para los ángulos de torsión C-S-Sn-S se encuentran en el intervalo de 48.1 a 82.7° mientras que el ángulo C-S-C-C está en el intervalo de 49.1 a 66.8°. Los dos límites superiores de ambos intervalos corresponden al compuesto **9**, que es el más asimétrico mientras que **10** es el más simétrico.

La comparación estructural entre los estanocanos (**IHSn**) y las dibenzotritiaestanocinas (6 - 11), muestra que el sistema dibenzoestanocina es lo suficientemente flexible para dar lugar a la existencia de interacciones $S \rightarrow Sn$ como en los estanocanos con grupos -**CH**₂-**CH**₂- mas flexibles que lo anillos bencénicos.

C12

C12

S2

C19

30

C35

C24

Figura 3.13. Ángulos de torsión (°) del anillo de ocho miembros de las dibenzotritiaestanocinas 6-11.

3.2.4.2 Estructura cristalina de los compuestos 6-11.

Las valores de las constantes de celda unitaria de los compuestos halogenados **6**, **7** y **8** indican que son isomorfos; el menor volumen lo presenta el compuesto clorado 6 y aumenta conforme el tamaño del halógeno también aumenta [1858.6(2) en **6**, 1899.0(3) en **7** y 1959.4(2) Å³ en **8**].

La celda unitaria de los compuestos 10 y 11 muestra la existencia de dos moléculas cristalográficamente independientes.

En la celda unitaria de los compuestos **6-8** no se encontraron distancias intermoleculares entre átomos no hidrogenoides menores a la suma de los radios de van der Waals por lo que los compuestos son considerados esencialmente monoméricos. En las figuras 3.14 - 3.16 se muestra la celda unitaria de los compuestos **6-8**.

Figura 3.14. Celda unitaria del compuesto S(C₆H₄S)₂SnPhCl, 6.

Figura 3.15. Celda unitaria del compuesto S(C₆H₄S)₂SnPhBr, 7.

Figura 3.16. Celda unitaria del compuesto S(C₆H₄S)₂SnPhI, 8.

En la celda unitaria del compuesto **9** se encontraron contactos intermoleculares menores a la suma de los radios de van der Waals entre los átomos de azufre relacionados por simetría, con distancias intermoleculares para SI •••SI¹ 3.327(1) Å [$\Sigma r_{vdw}(S,S) = 3.60$ Å]³⁷ y un ángulo SI¹•••SI—Cl de 171.54(4)° (Figuras 3.17 y 3.18).

Figura 3.17. Celda unitaria del compuesto S(C₆H₄S)₂SnPh₂, 9.

Figura 3.18. Contacto intermolecular S1•••S1' 3.327(1) Å en el compuesto S(C₆H₄S)₂SnPh₂, 9. (los átomos de hidrogeno fueron omitidos por claridad)

La celda unitaria del compuesto **10** presenta dos moléculas cristalográficamente independientes, **10a** y **10b**. Se encontraron contactos intermoleculares menores a la suma de los radios de van der Waals entre las moléculas independientes (**10a** y **10b**) a través del átomo de azufre (S2) de **10a** y el átomo cloro (C13) de la molécula **10b**, con distancias intermoleculares para S2•••C13 3.490(1) Å [$\Sigma r_{vdw}(S,S) = 3.60 \text{ Å}$]³⁷ y un ángulo Sn2—Cl•••S2 de 131.48(4)° (Figuras 3.19 y 3.20).

Figura 3.19. Celda unitaria del compuesto S(C₆H₄S)₂SnCl₂, 10.

Figura 3.20. Contacto intermolecular S2···Cl3 3.490(1) Å en el compuesto S(C₆H₄S)₂SnCl₂, 10.

En la celda unitaria del compuesto **11** se encontraron dos moléculas cristalográficamente independientes, **11a** y **llb.** En la celda unitaria no se encontraron contactos intermoleculares menores a la suma de los radios de van der Waals entre átomos no hidrogenoides por lo que el compuesto es esencialmente monomérico. La diferencia fundamental entre estas dos moléculas cristalográficamente independientes es la posición del grupo fenilo unido al átomo de estaño; en un caso el plano del anillo es perpendicular al plano formado por la unión de los dos azufres del ditiocarbamato mientras que en el otro caso el anillo bisecta a ese plano (Figura 3.21).

Figura 3.21. Celda unitaria del compuesto S(C₆H₄S)₂SnPhS₂CNEt₂, **11**.

El análisis estructural en estado sólido para los dibenzotritiaestanocinas 1 - 1 1 permite concluir que sí existe una interacción intramolecular transanular entre el átomo de azufre del tipo tioéter y el átomo de estaño, para apoyar esta propuesta y entender mejor la naturaleza de la interacción intramolecular transanular $S \rightarrow Sn$ se realizaron estudios teóricos de estructura electrónica.

3.2.5 Estudio teóricos de estructura electrónica.

Para tener una mejor comprensión de la naturaleza de la interacción intramolecular transanular $S \rightarrow Sn$, se realizaron estudios teóricos de orden de enlace, traslape interatómico y cargas de los átomos, los cuales fueron obtenidos dentro de la aproximación del orden natural de enlace (siglas en inglés NBO),⁵⁰ utilizando un nivel de teoría de los funcionales de densidad (DFT) utilizando el funcional hibrido B3LYP⁵¹ en las dibenzotritiaestanocinas **6-10**.

Todos los cálculos fueron realizados con el paquete de programas Gaussian 03.⁵² (Para mayor información ver la sección Detalles computacionales). A continuación se presentan los resultados obtenidos.

En primer lugar es importante cotejar los parámetros estructurales de los compuestos **6-10** obtenidos experimentalmente con los obtenidos mediante la realización de los cálculos teóricos a nivel DFT, denotados como **6*-10*** respectivamente. En las figuras 3.22-3.26 se muestra la comparación entre la estructura molecular obtenida por difracción de rayos X y la calculada con DFT. La simple inspección visual y la desviación cuadrática media (RMS)⁵³ de la estructura obtenida por cálculos DFT con respecto a la obtenida por difracción de rayos X (figuras 3.22- 3.26) indican una buena correlación. Los valores de RMS entre las dos estructuras se

encuentran en el intervalo de 0.138 a 0.449 Å. Al igual que en el caso de las dibenzogermocinas, se observa que la distancia de la interacción intramolecular S \rightarrow Sn para **6*-10*** es más larga que las encontradas en el estado sólido, esto puede ser debido a que el fragmento S \rightarrow Sn, puede estar ligeramente contraído en el estado sólido debido a las fuerzas del empaquetamiento cristalino. Las distancias de la interacción S \rightarrow Sn teóricas para los compuestos **6 - 8** siguen la misma tendencia que las encontradas por difracción de rayos X.

La diferencia entre las distancias transanulares experimental y teórica más grande se encontró para **10** (~0.21 Å), seguida por la que presentan los compuestos 6, 7 y 8 (~0.19 Å) y la diferencia más pequeña en el compuesto 9 (~0.016 Å). En la tabla 3.7 se muestra las distancias y ángulos de enlace más relevantes de las estructuras moleculares obtenidas por difracción de rayos X y las optimizadas por B3LYP/ccSDDTZ de los complejos **6-10**.

Figura 3.22. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 6 (RMS = 0.157 Å).

Figura 3.23. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 7 (RMS = 0.149 Å).

Figura 3.24. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 8 (RMS = 0.159 Å).

Figura 3.25. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto 9

(RMS = 0.449 Å).

Figura 3.26. Comparación de la estructura molecular obtenida por difracción de rayos X (línea continua) con la optimizada por B3LYP/ccSDDTZ (línea punteada) del compuesto **10** (RMS = 0.138 Å).

CII

r.

Compuesto	6	6*	7	7*	8	8*	9	9*	10a	10b	10 [±]
Ľ	CI1	CI1	Br1	Br1	11	11	C19	C19	CI1	CI3	CI1
L ²	C13	C13	C13	C13	C13	C13	C13	C13	CI2	Cl4	C12
D	S3	S3	S3	S3	S3	S3	S3	S3	S3	S6	S3
D→Sn1	2.827(1)	3.007	2.834(2)	3.021	2.840(1)	3.029	3.162(9)	3.178	2.735(2)	2.725(2)	2.934
Sn1-S1	2.407(1)	2.464	2.416(2)	2.465	2.415(1)	2.469	2.437(9)	2.469	2.394(2)	2.398(3)	2.452
Sn1-S2	2.40(1)	2.466	2.409(2)	2.465	2.405(1)	2.467	2.425(9)	2.479	2.399(3)	2.396(2)	2.455
Sn1-L	2.397(1)	2.393	2.5475(8)	2.547	2.742(5)	2.770	2.151(3)	2.159	2.361(3)	2.359(3)	2.367
Sn1-L ²	2.118(4)	2.145	2.121(7)	2.146	2.130(5)	2.149	2.138(3)	2.149	2.341(3)	2.348(3)	2 354
D→Sn1-L ¹	166.93(4)	166.47	167.92(5)	166.67	168.98(3)	166.92	164.65(8)	167.79	176.3(1)	175.3(1)	172 57
D→Sn1-L ²	91.6(1)	90.98	90.74(18)	89.15	89.7(1)	89.12	83,96(8)	82.20	85,98(10)	88,1(1)	86.00
D→Sn1-S1	76.93(4)	73.51	77.13(6)	73.08	77.11(4)	72.73	72.60(3)	73.84	82,41(8)	79.5(1)	78.27
D→Sn1-S2	79.28(4)	76.43	79.43(6)	76.25	79.29(4)	76.08	68,20(3)	70.33	79,22(9)	83.2(1)	74.82
S1-Sn1-S2	112.75(4)	,114,41	112.25(7)	114.71	111.55(5)	114.98	111.00(3)	111.94	122.4(1)	127.5(1)	117.11
S1-Sn1-L ²	123.7(1)	115.88	123.20(19)	115.05	122.0(1)	114.48	118.95(9)	114.92	115.8(1)	111.5(1)	116.25
S2-Sn1-L2	118.9(1)	121.47	119.7(2)	120.57	121.0(1)	119.97	99.08(9)	114.92	1167(1)	117.0(1)	115.42
L1-Sn1-L ²	101.0(1)	102.46	100.9(2)	103.95	100.9(1)	104.85	111 3(1)	109.97	974(1)	96.6(1)	98.71
S1-Sn1-L1	98,48(4)	102.04	98,81(5)	102 34	99 35(3)	102 59	104 3(1)	102.45	97 4(1)	98.4(1)	101 50
S2-Sn1-L	91.52(4)	94.43	91.87(5)	95 10	92 57(3)	95 57	99.08(9)	100.89	97.8(1)	95.0(0)	08 21
C7-D-C6-C1	130.1(3)	132.36	128 9(6)	132 59	127 5(4)	132.99	132 0(2)	131.24	81 3(9)	.87 3(4)	74.07
C6-D-C7-C12	-73 6(4)	-72 58	-74 8(6)	.72.80	-75 5(4)	.73.13	-65 2(3)	70.66	135 4(8)	136.4(7)	133.67
S2-Sn1-S1-C1	-31.8(2)	-22.58	-33 3(3)	-21.51	-34 2(2)	20.80	02.6(1)	01.51	-135.4(0)	85 4(2)	-155.02
S1-Sn1-S2-C12	98 4(1)	03.86	08 3(2)	03.00	08 0(2)	02.24	92.0(1)	17.00	-90.4(3)	27 4(4)	-92.01

3.2.5.1 Análisis de NBO.

En la tabla 3.8 se muestran los valores del índice de enlace de Wiberg calculado para algunos átomos seleccionados en las dibenzotritiaestanocinas **6-10**. El valor de los índices para todos los enlaces estaño-azufre(tiolato) tienen aproximadamente el mismo valor (intervalo 0.7413 a 0.7698) los cuales son congruentes con la formación de un enlace covalente estaño-azufre S-Sn. El índice de enlace de Wiberg para los átomos de estaño-azufre(tioéter) S \rightarrow Sn es notablemente más bajo que el encontrado en los enlaces estaño-azufre(tiolato), con porcentajes de -28 % para **6**, -26 % para **8**, -18 % para **9** y -32 % para **10**.

Compuesto	6	7	8	9	10
L ¹	CI	Br	1	C19	CI1
L^2	C13	C13	C13	C13	CI2
S3→Sn	0.2070	0.2007	0.1975	0.1335	0.2380
Sn-S1	0.7413	0.7428	0.7429	0.7698	0.7618
Sn-S2	0.7542	0.7599	0.7650	0.7380	0.7447
Sn-L ¹	0.6876	0.7535	0.8190	0.6528	0.7137
Sn-L ²	0.6630	0.6621	0.6636	0.6612	0.7292
S3-C6	1.0013	1.0022	1.0027	1.0191	1.0151
S3-C7	1.0139	1.0140	1.0141	1.0098	1.0023
S1-C1	1.0704	1.0690	1.0687	1.0805	1.0835
S2-C12	1.0860	1.0836	1.0817	1.0668	1.0705

Tabla 3.8. Valores del índice de enlace de Wiberg para átomos seleccionados de los compuestos 6–10. Datos obtenidos a nivel DFT con las base B3LYP/ccSDDTZ.

Para un mejor entendimiento de la naturaleza del enlace $S \rightarrow Sn$, se calculó el traslape átomo-átomo; los valores obtenidos se muestran en la tabla 3.9.

Tabla 3.9. Traslape átomo-átomo en función NBO para los compuestos 6–10. Datos obtenidos a nivel DFT con las base B3LYP/ccSDDTZ.

Compuesto	6	7	8	9	10
L ¹	CI	Br	1	C19	CI1
L ²	C13	C13	C13	C13	CI2
S3→Sn	0.2406	0.2347	0.2316	0.1523	0.2818
Sn-S1	0.6332	0.6333	0.6312	0.6192	0.6481
Sn-S2	0.6382	0.6413	0.6415	0.6059	0.6371
Sn-L ¹	0.5786	0.6413	0.6892	0.6109	0.5886
Sn-L ²	0.6388	0.6392	0.6378	0.6107	0.5855

De los valores obtenidos se observa que en todos los casos el valor de traslape entre los átomos de estaño-azufre(tiolato) son similares. De estos valores también se observa que el traslape de la región $S \rightarrow Sn$ es mayor en los compuestos que presentan ligantes electronegativos en posición axial unidos al átomo de estaño.

Como parte final del análisis teórico se calcularon las cargas de los átomos dentro del procedimiento de NBO. En la tabla 3.10 se muestran los valores obtenidos.

Compuesto	6	7	8	9	10
S3	0.32	0.32	0.32	0.31	0.35
S1	-0.20	-0.20	-0.20	-0.20	-0.17
S2	-0.18	-0.18	-0.17	-0.23	-0.18
Sn1	1.54	1.45	1.34	1.64	1.43
CI1	-0.49	1.75		-	-0.47
C12		-	-	-	-0.45
Br1		-0.42	-	-	-
11		-	-0.32		
C13	-0.52	-0.52	-0.51	-0.52	-
C19	-	-	-	-0.52	-

Tabla 3.10. Cargas atómicas obtenidas dentro del procedimiento NBO para átomos seleccionados de los compuestos **6–10**. Datos obtenidos a nivel DFT con las base B3LYP/ccSDDTZ.

De estos datos se puede observar que el átomo de azufre(tioéter) en los compuestos 6-10 exhibe aproximadamente la misma carga positiva (0.32), los átomos de azufre (tiolato) presentan aproximadamente la misma carga negativa en los compuestos. Esto puede ser debido al diferente ambiente de los átomos de azufre en los compuestos **6-10**: los átomos de azufre(tiolato) se encuentran de un modo dicoordinado y formado un enlace covalente con un átomo de estaño cargado positivamente, mientras que el átomo de azufre(tioéter) se encuentra enlazado a un átomo de carbono más electronegativo y también se encuentra compartiendo su densidad electrónica con el átomo de Sn(IV).

3.2.5.2 Discusión del análisis teórico en función de NBO.

Los valores del índice de enlace de Wiberg (Tabla 3.8) muestran la existencia de una interacción intramolecular entre S \rightarrow Sn en los compuestos **6-10**. Los valores para el traslape átomo-átomo en función de NBO (Tabla 3.9) confirman la existencia de esta interacción con tendencia a un enlace covalente. El análisis de carga atómica (Tabla 3.10) nos indica que la carga positiva adquirida por el átomo de azufre(tioéter) es debida a que este átomo dona densidad electrónica al átomo de estaño y pierde electrones adquiriendo una carga positiva lo cual indica la existencia de la interacción intramolecular S \rightarrow Sn. En los compuestos **6-10** la interacción S \rightarrow Sn presenta un carácter covalente, lo cual es apantallado por' la interacción Coulómbica mostrada por la interacción s \rightarrow Sn. Este comportamiento es favorecido debido al átomo del halógeno enlazado al átomo de estaño el cual presenta un campo Coulómbico dentro de la molécula.

Los átomos de azufre(tiolato) adquieren una carga negativa lo cual indica que estos átomos no pierden de forma importante densidad electrónica, como es el caso del átomo de azufre del tipo tioéter.

Con lo anterior es razonable concluir que la interacción intramolecular $S \rightarrow Sn$ en 6 - 10 presenta preferentemente un carácter covalente más que un carácter Coulómbico.

3.3 Conclusiones

Con base en los resultados obtenidos en esta parte de la tesis se ha encontrado que el ligante $S(C_6H_4SH)_2$ permite aumentar el número de coordinación átomos pesados del bloque **p** tal como estaño, mediante la formación de una interacción intramolecular transanular S \rightarrow Sn.

El análisis del porcentaje de desplazamiento BPT %, $\Delta \theta$, D y el orden de enlace *(oe)* muestran que la fuerza de la interacción intramolecular S \rightarrow Sn en los compuestos **6-10** disminuye de acuerdo al siguiente orden **10**>**6**>**7**>**8**>**9**, siendo el compuesto diclorado **10** el que presenta la distancia más corta S \rightarrow Sn y el compuesto que presenta la distancia más larga S \rightarrow Sn es el difenilado 9. La fuerza de la interacción intramolecular S \rightarrow Sn en **6-10** aumenta con el incremento de la electronegatividad del ligante en posición axial [Cl > Br > I ~ C].⁴⁷ Lo anterior indica que la presencia de ligantes electronegativos en posición axial unidos al átomo de estaño favorece el aumento del número coordinación del átomo de estaño y la presencia de los grupos fenilo unidos al átomo de estaño reducen su acidez con respecto a los compuestos **6-8** que presentan un átomo electronegativo (halógeno), con lo cual disminuye la capacidad del aumento del número de coordinación.

Tomando en cuenta la interacción intramolecular transanular $S \rightarrow Sn$ en los compuestos **6-10**, el átomo de estaño se encuentra pentacoordinado con geometría BPT. Para el compuesto **11** tomando en consideración la interacción $S \rightarrow Sn$ y el modo de coordinación bidentado del ligante ditiocarbamato, el átomo de estaño presenta una hexacoordinación con geometría octaédrica.

Los parámetros estructurales de las moléculas geométricamente optimizadas en fase gaseosa (6^*-10^*) concuerdan razonablemente bien con los obtenidos experimentalmente mediante difracción de rayos X de monocristal (6-10). Los cálculos teóricos indican que la distancia de enlace S \rightarrow Sn en los compuestos 6-10 es más larga que la encontrada en el estado sólido.

Los valores del índice de enlace de Wiberg (Tabla 3.8) muestran la existencia de un interacción intramolecular entre S \rightarrow Sn en los compuestos **6-10**. El análisis teórico en función de NBO indica que el sistema S \rightarrow Sn debe ser considerado como una interacción débil con un carácter esencialmente covalente.

3.4 Parte experimental.

Todas las reacciones se llevaron a cabo en atmósfera de argón libre de oxigeno y humedad mediante el uso técnicas de Schlenk.⁵⁴ Los disolventes fueron secados y destilados antes de su uso por métodos convencionales. Los puntos de fusión se determinaron en un aparato Melt-Temp II y se informan sin corregir. Los espectros se obtuvieron en los siguientes instrumentos: espectros de MS-IE; se determinaron en un Finnigan MAT 8230 y en un Varían MAT CH5. Análisis elemental: Perkin Elmer Series II CHNS/O Analyzer. Los espectros de IR se obtuvieron en el intervalo 4000-400 cm⁻¹ en un espectro fotómetro FT-IR Perkin-Elmer System 2000, como pastillas de KBr. Los espectros de RMN de ¹H, ¹³C{¹H}, ¹¹⁹Sn se obtuvieron en un espectrómetro JEOL Eclipse 400 a una frecuencia de ¹H 399.78 MHz, ¹³C{¹H}; 100.53 MHz y ¹¹⁹Sn; 149.03. Los desplazamientos químicos (5) se reportan en ppm, utilizando como referencia TMS. El ligante S(C₆H₄SH)₂ fue sintetizado de acuerdo al método de síntesis reportado.²² Ph₂SnCl₂, SnCl₄, C₆H, 2N₂ (1,4-diazabiciclo[2.2.2]octano), KI, NaS₂CNEt₂-2H₂O, KBr y HBr fueron adquiridos de Aldrich y Fluka y se utilizaron como se recibieron.

3.4.1 Preparación de los dibenzotritiaestanocinas 6-11.

S(C₆H₄S)₂SnPhCl (**6**): A una solución que contenía S(C₆H₄SH)₂ (1.0 g, 4.0 mmol) en benceno (25 mL) a 0°C fue adicionado Ph₂SnCl₂ (1.38 g. 4.0 mmol) en benceno (25 mL). La solución amarilla fue agitada durante 30 min, la solución resultante se colocó a reflujo completando 24 h. La solución se llevó a temperatura ambiente. Por evaporación lenta del disolvente se obtuvo a **6** como cristales incoloros, que fueron lavados con hexanos (40 mL) y filtrados por succión. Rendimiento: 1.75 g (91%). EM-IE *miz* (%): 480 (10) [M⁺], 445 (10) [VT⁺ - Cl], 367 (10) [S(C₆H₄S)₂Sn - 1], 216 (pico base) [S(C₆H₄S)⁺]. P.f = 228 - 233 °C. Análisis Elemental para S(C₆H₄S)₂SnPhCl: Calculado: C 45.07, H 2.73. Encontrado: C 44.86, H 2.81. RMN ¹H NMR (CDC1₃): δ = 7.17 (ddd, ³J_H³ - H² = ³J_H³ - H⁴ = 7.68 Hz, ⁴J_H³ - H¹ = 1-44 Hz, 2 H, H³), 7.29 (ddd, ³J_H⁴ - H¹ = ³J_H² - H² = ¹J_H³ - H⁴ = 1-44 Hz, 2 H, H²), 7.45 (m, 3 H, H⁶ y H⁷), 7.48 (dd, ³J_H⁴ - H³ = 7.68 Hz, ⁴J_H⁴ - H² = 1.44 Hz, 2 H, H⁴), 7.69 (dd, ³J_H¹ - H² = 7.68 Hz, ⁴J_H¹ - H³ = 1-44 Hz, 2 H, H¹), 7.84 [m, ³J(¹¹⁹ sn⁻¹H) = 94 Hz, 2 H, H⁵] ppm. RMN ¹³C {1H} (CDCl₃) (60°C): δ = 126.9, 129.6 [³J(¹¹⁹ sn⁻¹³C) = 96 Hz], 130.4, 130.7, 131.2 132.3 [³J(¹¹⁹ sn⁻¹³C) = 45 Hz], 133.6, 134.6 [²J(¹¹⁹ sn⁻¹³C) = 64 Hz], 141.2, 141.6 [³J(¹¹⁹ sn⁻¹³C) = 27 Hz] ppm. RMN ¹¹⁹ Sn (CDCl₃): δ = -63.4 ppm. IR (KBr, cm⁻¹): υ = 3049, 1567, 1444, 1430, 1255, 1037, 752, 727, 688.

S(C₆H₄S)₂SnPhBr (7): Una suspensión de S(C₆H₄S)₂SnPhCl-(6, 0.4 g, 0.83 mmol), KBr (0.5 g, 4.2 mmol) y HBr 48% (2 mL) en benceno (25 mL) fue colocada a reflujo durante 16 h. El agua de la solución fue removida con la ayuda de una trampa Dean-Stark. La suspensión blanca se hizo pasar por un columna de Celite y Na₂SO₄. Por evaporación lenta del disolvente se obtiene 7 como un polvo blanco, que fue lavado con hexano (40 mL) y filtrado por succión. El polvo blanco fue disuelto en cloroformo (50 mL), la solución incolora resultante se hizo pasar por una columna de Ceuta y Na₂SO₄. El cloroformo fue removido con la ayuda de un flujo positivo de argón, produciendo a 7 como cristales incoloros, que fueron lavados con hexano (40 mL) y filtrados por succión. Rendimiento: 300 mg (68%). EM-IE *miz* (%): 524 (13, M⁺), 445 (50) [M⁺ - Br], 367 (5) [S(C₆H₄S)₂Sn - 1], 216 (pico base) [S(C₆H₄S)-⁺]. P.f = 202-204°C. Análisis Elemental para S(C₆H₅S)₂SnPhBr: Calculado: C, 41.25; H, 2.50; Encontrado: C, 40.69; H, 2.41. RMN 'H (CDCl₃): δ = 7.17 (ddd, ³J_H³-H² = ³J_H³-H⁴ = 7.52 Hz, ⁴J_H³-H¹ = 1.44 Hz, 2 H, H³), 7.29

(ddd, ${}^{3}J_{H}{}^{2}_{-H}{}^{1} = {}^{3}H_{H} = 7.52$ Hz, W = 1.44 Hz, 2 H, H²), 7.43 (m, 3 H, H⁶ y H⁷), 7.45 (dd, V-H³ = 7.52 Hz, ${}^{4}J_{H}{}^{4}_{-H}{}^{2}_{-} = 1$ -44 Hz, 2 H, H⁴), 7.68 (dd, ${}^{3}J_{H}V = 7.52$ Hz, ${}^{4}J_{H}V = 1$ -44 Hz, 2 H, H¹), 7.82 [m, ${}^{3}J({}^{119}{}_{SN-H}) = 96$ Hz, 2 H, H⁵] ppm. RMN ${}^{13}C\{1H\}$ (CDC1₃): $\delta = 127.0$, 129.5 [${}^{3}</({}^{n}V{}^{3}c) = 90$ Hz], 130.4, 130.6, 131.3, 132.2 [${}^{3}J({}^{119}{}_{Sn}{}^{-13}c) = 40$ Hz], 133.7, 134.6 [${}^{2}J({}^{119}{}_{Sn}{}^{-13}c) = 65$ Hz], 141.0, 141.3 ppm. RMN ${}^{119}Sn$ (CDC13): $\delta = -95.1$ ppm. IR (KBr, cm⁻¹): u = 3050. 1568, 1445, 1442, 1249, 1081, 1039, 862, 735, 730, 710, 692.

S(C₆H₄S)₂SnPhI (**8**): Una suspensión de S(C₆H₄S)₂SnPhCl(**6**, 0.4 g, 0.83 mmol), KI (0.7 g, 4.2 mmol) en benceno (25 mL) fue colocada a reflujo durante 16 h. La suspensión amarilla resultante se hizo pasar por un columna de Ceuta y Na₂SO₄ Por evaporación lenta del disolvente se obtiene a **8** como un polvo amarillo, que fue lavado con hexano (40 mL) y filtrado por succión. El polvo amarillo fue disuelto en cloroformo (50 mL) la solución amarilla resultante se hizo pasar por una columna de Celita y Na₂SO₄. El cloroformo fue removido con la ayuda de flujo positivo de argón, produciendo a **8** como cristales amarillo-pálido, que fueron lavados con hexano (40 mL) y filtrados por succión. Rendimiento: 380 mg (80%). EM-IE *miz* (%): 444 (95) [M⁺ - I - 1], 368 (5) [S(C₆H₄S)₂Sn], 216 (pico base) [S(C₆H₄S)⁺]. P.f = 178-180°C. Análisis Elemental para S(C₆H₅S)₂SnPhI: Calculado: C, 37.85; H, 2.29; Encontrado: C, 38.15; H, 2.21. RMN ¹H (CDC1₃): δ = 7.16 (ddd, V-H² = V-H⁴ = 7.68 Hz, ⁴J_HV = 1-48 Hz, 2 H, H³), 7.29 (ddd, ³J_HV = V-H³ = 7.68 Hz, V-H⁴ = 1-48 Hz, 2 H, H²), 7.41 (m, 3 H, H⁶ y H⁷), 7.43 (dd, ³J_HV = 7.68 Hz, V-H² = 1-48 Hz, 2 H, H⁴), 7.68 (dd, V-H² = 7.68 Hz, W = 1-48 Hz, 2 H, H¹), 7.77 [m, ³J("VH) = 93 ^{Hz} > ² ^H > H⁵] PP^m- RMN ¹³C{1H} (CDC1₃): δ = 127.1, 129.4 [V(¹⁰_Sn⁻¹³c) = 92 Hz], 130.3, 131.0, 131.2, 131.9 [²J(¹⁰_Sn⁻¹³c) = 40 Hz], 133.8, 134.2 [²/(¹¹⁹_Sn⁻¹³c) = 65 Hz], 140.9, 141.2 [V(¹¹⁹_Sn⁻¹³c) = 31 Hz] ppm. "⁹Sn NMR (CDCI3): δ = -180.4 ppm. IR (KBr, cm⁻¹): i> = 3043, 1570, 1443, 1430, 1251, 1105, 1037, 800, 752, 727, 687, 653.

S(C₆H₄S)₂SnPh₂ (**9**): Una solución de S(C₆H₄SH)₂ (0.5 g, 2.0 mmol) y C₆H₁₂N₂ (0.225 g, 2.0 mmol) en cloroformo (25 mL) en un baño de hielo le fue adicionada una solución de Ph₂SnCl₂ (0.69 g, 2.0 mmol) en cloroformo (25 mL). Se retiro el baño de hielo y la solución se colocó a reflujo durante 24 h. La suspensión blanca se hizo pasar por una columna de Celita y Na₂SO₄. El cloroformo fue removido con la ayuda de flujo positivo de argón, produciendo a 9 como cristales incoloros, que fueron lavados con hexano (40 mL) y filtrados por succión. Rendimiento: 0.93 g (90%). EM-IE *miz* (%): 522 (10) [Mⁿ⁺], 445 (85) [Mⁿ⁺ - Ph], 368 (5) [S(C₆H₄S)₂Sn], 216 (pico base) [S(C₆H₄S)₋⁺]. P.f = 132 - 135 °C. Análisis Elemental para S(C₆H₄S)₂SnPh₂: Calculado: C 55.29, H 3.48; Encontrado C 55.99, H 3.61. RMN *H (CDCI3): δ = 7.12 (ddd, W = VV = 7.72 Hz, V-H¹ = 1.48 Hz, 2 H, H³), 7.22 (ddd, V-H' = V-H³ = 7.72 Hz, W = 1.48 Hz, 2 H, H⁴), 7.66 (m, 2 H, H⁵), 7.71 (dd, V-H² = 7.72 Hz, ⁴J_HV = 1-48 Hz, 2 H, H¹) ppm. RMN ¹³C{1H} NMR (CDCI3): δ = 126.6, 128.9 [V(¹¹⁹sn-¹³c) = 65.4 Hz], 129.0, 129.9 [V(¹¹⁹sn-¹³c) = 24 Hz], 133.3 [V(¹¹⁹sn-¹³c) = 50 Hz], 140.5[V(¹¹⁹sn-¹³c) = 24 Hz], 142.4 ppm. RMN ¹⁹Sn (CDC1₃): 5 = -18.4 ppm. IR IR (KBr, cmⁿ¹): u = 3060, 1569, 1441, 1427, 1245, 1101, 1066, 1039, 747, 724, 691.

 $S(C_6H_4S)_2SnCl_2$ (10): A una solución de $S(C_6H_4SH)_2$ (0.5 g, 2.0 mmol) en benceno (25 mL) en un baño de hielo le fue adicionada una solución de $SnCl_4$ (0.52 g, 2.0 mmol) en benceno (25 mL). La solución amarilla fue agitada durante 30 min, se retiró el baño de hielo y la solución fue colocada a reflujo durante 6 h. La solución amarilla resultante se hizo pasar por una columna de

Celita y Na₂SO₄. El benceno fue removido con la ayuda de flujo positivo de argón, produciendo a **10** como polvo de color amarillo, que fue lavado con hexanos (40 mL) y filtrados por succión. Rendimiento: 0.34 g (43%). EM-EI *m/z* (%): 438 (5) [M⁺⁺], 400 (8) [M⁺ - Cl], 368 (8) [S(C₆H₄S)₂Sn], 216 (pico base) [S(C₆H₄S)-⁺]. P. f = 112 - 116 °C. Análisis Elemental para S(C₆H4S)2SnCl₂: Calculado C 32.91, H 1.84; Encontrado C 32.35, H 1.90. ¹H NMR (CDCl₃): δ = 7.27 (ddd, V-H² = V-H⁴ = 7.72 Hz, V-H' = 1 -48 Hz, 2 H, H³), 7.39 (ddd. V-H' = V-H³ = 7.72 Hz, ⁴J_HV = 1-48 Hz, 2 H, H²), 7.54 (dd, ³J_H⁴-_H³ = 7.72 Hz, ⁴J_HV = 1-48 Hz, 2 H, H⁴), 7.71 (dd, V-H² = 7.72 Hz, ⁴J_H'-_H³ = 1-48 Hz, 2 H, H¹) ppm. RMN ¹³C{1H} (CDCl₃): δ = 127.8. 130.0 [²J(¹¹⁹_{Sn}-¹³c)= 40 Hz], 131.1, 131.8 [³J("V'³c) = 69 Hz], 133.6, 139.1 [V(¹¹⁹_{Sn}.³c)= 35 Hz] ppm. ¹¹⁹SnNMR(CDCl₃): 5 = -142.8ppm. IR IR (KBr, cm^{"1}): *v* = 3047, 1569, 1441, 1245, 1101, 1039,747.

S(C₆H₄S)2SnPh(S2CNEt₂) (ll):Una suspensión de S(C₆H₄S)₂SnPhCl-(6, 0.1 g, 0.20 mmol) y NaS₂CNEt₂-2H₂O (0.125 g, 0.60 mmol) en benceno (25 mL) fue colocada a reflujo durante 16 h. La suspensión amarilla obtenida se hizo pasar por una columna de Celita y Na₂SO₄. El benceno fue removido con la ayuda de flujo positivo de argón, produciendo a **11** un como polvo de color amarillo, que fue lavado con hexano (40 mL) y filtrados por succión. (40 mL). Rendimiento: 90 mg (80%). P.f = 140-145°C. Análisis Elemental para S(C₆H₅S)₂SnPh(S₂CNEt₂: Calculado: C, 46.63; H, 3.91; Encontrado: C, 46.78; H, 3.94. ¹H NMR (CDC1₃): δ = 1.24 (t, ³J_H-_H = 7.14 Hz, 6 H, CH₃), 3.65 (c, ³J_H-_H = 7.14 Hz, 4 H, CH₂) 7.08 (ddd, ³J_HV = W = 7.72 Hz, V-_H! = 1.48 Hz, 2 H, H³), 7.21 (ddd, V-_H' = W = 7.72 Hz, ⁴J_HV = 1-48 Hz, 2 H, H²), 7.36 (m, 3 H, H⁶ y H⁷), 7.48 (dd, V-_H³ = 7.72 Hz, ⁴J_HV = 1-48 Hz, 2 H, H⁴), 7.62 (dd, ³J_H¹-_H² = 7.72 Hz, ⁴J_H'-_H³ = 1.48 Hz, 2 H, H¹), 7.90 [m, V^'VH) = 94 Hz, 2 H, H⁵]ppm. ¹³C {1H} NMR (CDC13) (60°C): δ = 12.0 (CH₃), 51.3 (CH₂), 125.5, 128.6 [³J(¹¹⁹sn-¹³c) = 40.0 Hz], 129.2, 129.4, 132.9 [³J(^{U9}sn-¹³c) = 40 Hz], 133.3, 133.8 [²-(¹¹⁹sn-¹³c) = 30 Hz], 134.8, 145.1 [V(¹¹⁹sn-¹³c) = 20 Hz], 150.2, (C=N) ppm. ¹¹⁹Sn NMR (CDC1₃): δ = -322.6 ppm. IR (KBr, cm¹¹): *v* = 3043. 2929, 2869, 1570, 1443, 1430, 1251, 1105, 1037, 800, 752, 727, 687, 653.

3.4.2 Cristalografía de rayos X de $S(C_6H_4S)_2SnPhCl(6)$, $S(C_6H_4S)_2SnPhBr-(7)$, $S(C_6H_4S)_2SnPhI-(8)$, $S(C_6H_4S)_2SnPh_2$ (9), $S(C_6H_4S)_2SnCl_2-(10)$ y $S(C_6H_4S)_2SnPh(S_2CNEt_2)$ (11).

Los cristales de los compuestos **6**, **7**, **8** y **10** fueron crecidos por evaporación lenta de una solución de benceno. Los cristales de los compuestos **9** y **11** fueron obtenidos por evaporación lenta de una solución de cloroformo. Los datos de difracción de rayos X de los compuestos **6-11** fueron colectados a temperatura ambiente en difractómetro CCD Smart 6000 usando una radiación de *Mo-Ka* ($\lambda = 0.71073$ Å, monocrorrfador de grafito). Los datos obtenidos fueron tratados utilizando el paquete de software SMART. Las estructuras fueron resueltas por métodos directos utilizando el programa SHELXTL NT Versión 5.10, utilizando el refinamiento de mínimos cuadrados F2.⁵⁵ Se aplico corrección por absorción mediante el uso del programa SADABS.⁵⁶ Los parámetros de desplazamiento de los átomos no hidrogenoides fueron refinados anisotrópicamente. La posición de los átomos de hidrogeno fueron fijadas con un parámetro isotrópico común.

3.4.3 Detalles Computacionales.

Las estructuras moleculares de los compuestos **6-10** fueron modeladas con el visualizador Gauss View,⁵⁷ posteriormente se optimizo la geometría utilizando el método semiempírico PM3.⁵⁸ Finalmente se optimizo la geometría a nivel teoría de los funcionales de la densidad (DFT) utilizando un híbrido funcional B3LYP.⁵¹ En los cálculos DFT para el átomo de estaño se empleo un potencial relativista de core efectivo Sttutgart-Dresden (RECP)⁵⁹ con el empleo de bases de correlación consistente con una base triple- ζ para todos sus electrones.⁶⁰ Para los átomos de hidrogeno, carbono, azufre y los halógenos (Cl, Br, I)⁵¹ se empleo la base de correlación consistente con una base doble- ζ para todos sus electrones. Las bases utilizadas incluyen funciones de polarización y difusión. Las bases utilizadas son referidas como B3LYP/ccSDDTZ. El orden de enlace, traslape interatómico y las cargas fueron calculadas dentro la aproximación del NBO.⁵⁰ Todos los cálculos fueron realizados con la suite de programas Gaussian 03.⁵²

Bibliografía

¹ R. Cea Olivares, V. García Montalvo, M. Moya Cabrera, *Coord, Chem. Rev.*, **2005**, *249*, 859. Y las referencias ahí citadas.

- ² M. Draeger, H. J. Guttmann, J. Organomet. Chem., **1981,** 212, 171.
- ³ M. Beuter, U. Kolb, A. Zickgraf, E. Brau, M. Bletz, M. Draeger, *Polyhedron*, 1997, 16, 4005.
- ⁴ O. S. Jung, J. H. Jeong, Y. S. Sohn, Organometallics, **1991**, 10, 761.
- ⁵ M. Draeger, R. Engler, *Chem. Ber.*, **1975**, *108*, 17.
- ⁶ M. Draeger, J. Organomet. Chem., **1983**, 251, 209.
- ⁷ R. G. Swisher, R. R. Holmes, *Organometallics*, **1984**, *3*, 365.
- ⁸ R. Willem, M. Gielen, J. M. Piret, M. V. Meerssche, K. Jurkschat, A. Tzschach, J. Organomet. Chem., 1984,277,335.
- ⁹ B. M. Schmidt, M. Draeger, K. Jurkschat, J. Organomet. Chem., 1991, 410, 43.
- ⁰ M. Draeger, R. Engler, Z Anorg. Allg. Chem., **1975**, 413, 229.
- ¹ U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics, 1994, 13, 4413.
- ² B. M. Schmidt, M. Draeger, K. Jurkschat, J. Organomet. Chem., 1991, 410, 43.
- [®] M. Draeger, 2. Anorg. Allg. Chem., **1985**, 527, 169.
- ⁴ M. Draeger, Z Naturforsck, B: Chem.Sci., 1985, 40, 1511.
- ⁵ M. Draeger, Z Naturforsck, B: Chem. Sci., **1981**, 36, 437.
- ⁶ M. Draeger, *Chem. Ber.*, **1981**, *114*, 2051.
- ⁷ P. García y García, A. M. Cotero Villegas, M. López Cardoso, V. García Montalvo, R. A. Toscano, A.
- Gómez Ortiz, R. Ferrari Zijlstra, R. Cea Olivares, J. Organomet. Chem., 1999, 587, 215.
- ⁸ P. García y García, R. Cruz Almanza, R. A. Toscano, R. Cea Olivares, *J. Organomet. Chem.*, **2000**, *598*, 160.
- ⁹ R. Cea Olivares, V. Lomeli, S. H. Ortega, I. Haiduc, *Polyhedron*, 1995, 14, 747.

¹⁰ K. Jurkschat, J. Schilling, C. Mugge, A. Tzschach, J. Meunier Piret, M. van Meerssche, M. Gielen, R. Willem, *Organometallics*, **1988**, 7, 38.

¹ Z. Jian Zhang, D. Xin Wen, H. Min Sheng, X. Sheng Qing, W. Long Sheng, W. Xin Tao, *Inorg. Chem. Commun*, **2003**, *6*, 387.

- ² D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem., **1999**, 1715.
- ² J. Holecek, M. Nadvornik, K. Handlir, A. Lycka, J. Organometal. Chem, **1983**, 241, 177.
- ¹⁴ D. Dakternieks, J. Hongjian Zhu, D. Masi, C. Mealli, *Inorg. Chem.* **1992**, *31*, 3601.
- ²⁵ U. Kolb, M. Beuter, M. Draeger, *Inorg. Chem.*, **1994**, *33*, 4522.

³⁶ Z. Jian Zhang, D. Xin Wen, H. Min Sheng, X. Sheng Qing, W. Long Sheng, W. Xin Tao, *Inorg. Chem. Commun*, **2003**, *6*, 387.

- ¹⁷ B. Menzebach, P.Bleckmann, J. Organomet. Chem., **1975**, 91, 291.
- ²⁸ A. J. Edwards, B. F. Hoskins, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, 1990, 46, 1397.
- ²⁹ James E. Huheey, Ellen A. Keiter y Richard L. Keiter, *Inorganic Chemistry: Principies ofStructure and Reactivity*, Cuarta Edición, Harper Collins College Publishers, USA, **1993**, A30.
- ³⁰ P. T. Greene, R. F. Bryan, J. Chem. Soc. A, **1971**, 2549.
- ³ J. S. Tse, F. L. Lee, E. J. Gabe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, 1986, 42, 1876.
- ³² M. Charisse, B. Mathiasch, M. Draeger, U. Russo, *Polyhedron*, **1995**, *14*, 2429.
- ³³ P. T. Greene, R. F. Bryan, J. Chem. Soc. A, **1971**, 2549.
- ³⁴ J. S. Tse, F. L. Lee, E. J. Gabe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, 1986, 42, 1876.
- ³⁵ M. Charisse, B. Mathiasch, M. Draeger, U. Russo, *Polyhedron*, **1995**, *14*, 2429.
- ³⁶ N. W. Alcock, Adv. Inorg. Chem. Radiochem., **1972**, 15, 1.
- ³⁷ W. W. Porterfield, *Inorganic Chemistry: A Unified Approach*, Segunda Edición, Academic Press, Inc. USA **1993**, p. 214.
- ³⁸ A. Bondi, J. Phys. Chem., **1964**, 68, 441.
- ⁹⁹ K. A. Fusie Clark, T. A. George, *Inorg. Chem.*, 2005, 44, 416.

⁴⁾ A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.*, 1999, 38, 3369.

⁴ N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, 1998, 37, 3862.

⁴ D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082.

⁴⁶ U. Kolb, M. Draeger, B. Jousseaume, Organometallics, **1991**, 10, 2737.

⁴⁴ H. B. Biirgi, Inorg. Chem., **1973**, 12, 2321.

⁴⁵ D. Britton, J. D. Dunitz, ./. Am. Chem. Soc, 1981, 103, 2971. D. Britton, J. D. Dunitz, J. Am. Chem. Soc, 1981, 103, 2971.

⁴⁶ L. Pauling, The Nature of the Chemical Bond, Tercera Edición, Cornell University, Ithaca, 1960, Cap. 7.

⁴ La electronegatividad termoquímica de Pauling para Cl = 3.16, Br = 2.96, I = 2.66, C = 2.55: J. E. Huheey, E. A. Keiter, R. L. Keiter, *Química Inorgánica: Principios de estructura y reactividad*, Cuarta Edición, Oxford University Press, Haría, D. F., México, 1993, pag, 197.

⁴⁸ S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H. F. Hsu, Inorg. Chem., 1997, 36, 5966.

⁴⁾ T. Thompson, S. D. Pastor, G. Rish, *Inorg. Chem.*, **1999**, 38, 4163.

⁵⁰ A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

^s A. D. Becke, J. Chem. Phys., **1993**, 98, 5648.

² Gaussian 03, Revisión B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gilí, B. Johnson, W. Chen, M. W. Wong, C. González, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

³ La desviación cuadrática media (RMS por sus siglas en inglés) es definida por la ecuación:

 $RMS = [1/n\Sigma (\Delta p)^2]^{1/2}$

Donde:

n es el número de pares de átomos comparados entre las dos estructuras

Ap es la separación entre cada par de átomos de las dos estructuras. Los valores de Ap fueron obtenidos con el programa XP incluido en el paquete SHELX.

⁵⁴ W. L. F. Armarego y D. D. Perrin, *Purification of Laboratory Chemicals*, Butterworth Heinemann, Cuarta Edición, Gran Bretaña, **1999.**

⁵⁵ SHEXTL 5.10 Bruker AXS, Inc. Madison. WI. USA, **1998.**

⁵⁶ SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc. Madison, Wl, **1996.**

⁵⁷ Gauss View Versión 2.06, Gaussian, Inc., Pittsburgh PA, USA.

³⁰ a).- J. J. P. Stewart, J. Comp. Chem., **1989**, 10, 209. b).- J. J. P. Stewart, J. Comp. Chem., **1989**, 10, 221.

⁹⁹ A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.*, **1993**, *80*, 1431.

⁶⁰ J. M. L. Martin, A. Sundermann, J. Chem. Phys., 2001, 114, 3408.

Capítulo 4 Estudio estructural de dibenzoplumbocinas

En el presente capítulo se describe la síntesis y el estudio estructural de dos dibenzoplumbocinas (Figura 4.1).

Figura 4.1 Dibenzoplumbocinas.

4.1 Antecedentes.

Los complejos de Pb(IV) que presentan en su estructura interacciones intramoleculares han sido poco estudiados. Algunos ejemplos de compuestos que contienen Pb(IV) y que presentan interacciones intramoleculares pueden ser los derivados conteniendo ligantes potencialmente bidentados. Con la introducción de estos ligantes el átomo de Pb(IV) muestra un aumento en su número de coordinación de cuatro a cinco con geometría de tetraedro monoapicado y de cuatro a seis con geometría octaédrica (Figura 4.2.).¹⁻³ En la sección 1.5.3 se han revisado a detalle los aspectos estructurales de plumbocanos que presentan interacciones intramoleculares con un átomo donador (D \rightarrow Pb)

intramoleculares de azufre u oxígeno.

A continuación se analizan y discuten los resultados obtenidos en la presente tesis con respecto al estudio del aumento del número de coordinación del átomo de plomo presente en dibenzoplumbocinas.

4.2 Resultados y discusión.

4.2.1 Síntesis de los compuestos 12 y 13.

Los ligantes $S(C_6-H_4SH)_2$ y $O(C_6H_4SH)_2$ fueron sintetizados de acuerdo a los métodos informados.^{4,5} La reacción de diclorodifenilplomo en THF a 0°C con la sal dilitiada del ligante, generada *in situ* de la reacción del ditiol [S(C6H4SH)2 o CXCÓHUSH^] y dos equivalentes de ""BuLi, producen los complejos $D(C_6H_4S)_2PbPh_2$ [D = S (12), O (13)], respectivamente (ver esquema 4.1 y detalles en la parte experimental).

Esquema 4.1. Síntesis de las dibenzoplumbocinas 12 y 13.

Los compuestos **12** y **13** son estables al aire, solubles en benceno, tolueno, diclorometano y cloroformo e insolubles en pentano, hexano e isopropanol.

4.2.2 Espectroscopia de Resonancia Magnética Nuclear.

4.2.2.1 Resonancia Magnética Nuclear de ¹H de los complejos 12 y 13.

Los espectros de RMN de ¹H de los compuestos **12** y **13** se obtuvieron en soluciones de CDCI₃ a temperatura ambiente y los desplazamientos químicos (δ) son relativos al TMS. Las asignaciones de los dos complejos fueron hechas con ayuda de experimentos en dos dimensiones homonuclear y heteronuclear (COSY, HETCOR y COLOC).

El espectro de RMN de ¹H del compuesto **12** muestra cinco grupos de señales de las cuales dos señales en frecuencia baja corresponden a los protones H-3 y H-2 y se presentan como señales ddd que son típicas de los sistemas dibenzotritiametalocinas. Las demás señales se observan como señales múltiples debido al traslape de las señales del grupo fenilo (Tabla 4.1). Para el compuesto **13** el espectro de RMN de ¹H muestra seis grupos de señales, de las cuales tres pertenecen al grupo fenilo. El sistema dibenzoxaditiaplumbocina muestra tres señales debido a que las señales del H-2 y H3 se encuentran traslapadas. La desaparición de la señal del protón del grupo SH de los ligantes libres [S(C₆H₄SH)₂ y O(C₆H₄SH₂]^{5,6} apoya la formación de los enlaces S(tiolato)-Pb. Los espectros de los dos compuestos muestran que el H-5 presenta satélites debidas al acoplamiento a tres enlaces con ²⁰⁷Pb [³J(¹H — ²⁰⁷_{Pb})] con un valor de 120 y 107 Hz para 12 y 13, respectivamente. En la figura 4.3 se muestra la numeración empleada en RMN de ¹H para los compuestos **12** y **13**. Las figuras 4.4 y 4.5 muestran el espectro de RMN de ¹

H para los compuestos 12 y 13.

Tabla 4.1. RMN de	¹ H desplazamiento	químico (δ en ppm)	para 12 y	13 en CI	OCl_3
	a tempera	tura ambiente.			

Compuesto	D	H-1	H-2	H-3	H-4	H-5	H-6	H-7	SH
D(C ₆ H ₄ SH) ₂	S	7.45-7.35	7.25-7.0	7.25-7.0	7.25-7.0	-	-	-	4.10
12	S	7.67	7.20	7.06	7.44	7.67	7.44	7.33	2
$D(C_6H_4SH)_2$	Ο	7.09	7.04	7.36	6.82	-	-	-	3.90
13	Ο	7.57	7.02	7.02	6.82	7.62	7.40	7.29	-

127

Figura 4.5. Espectro de RMN de ¹H para el compuesto **13**, en CDCl₃ a temperatura ambiente.

4.2.2.2 Resonancia Magnética Nuclear de ¹³C de los complejos 12 y 13.

El espectro de RMN de ¹³C{¹H} para los complejos **12** y **13** muestra diez señales de las cuales, seis pertenecen al sistema dibenzometalocina y las otras cuatro corresponden al grupo fenilo unido a plomo. Esto indica que las dos mitades del sistema dibenzoplumbocina [D(C₆H₄S) D = S (**12**); O (**13**)] y los grupos fenilo son equivalentes. En la tabla 4.2 se presentan los valores del δ de RMN de ¹³C{¹H} para los compuestos **12** y **13**. En los complejos **12** y **13** el valor obtenido en la variación δ con respecto al ligante libre [S(C₆H₄SH)₂ y O(C₆H₄SH)₂], muestran que los carbonos

C-4a, C-la y C-4 se encuentra a frecuencias más altas. El δ del carbono *ipso* C-5a para **12** y **13** está desplazado a frecuencias más altas que el informado para Ph₄Pb⁶ (150.2 ppm en CDCI₃, la comparación con Ph₂PbCl₂ no se realizó debido que es insoluble en CDCI₃). El carbono *ipso* C-5a para **12** se encuentra desplazado a frecuencias más altas que el informado para su homólogo plumbocano [S(CH₂CH₂S)₂PbPh₂ δ = 158.7 ppm, en CDCI₃], mientras que el δ del carbono C-5a para **13** se encuentra desplazado a frecuencias más bajas que el de su homólogo plumbocano [O(CH₂CH₂S)₂PbPh₂ δ =158.2 ppm, en CDCI₃].⁴ Para ambos compuestos se observa la presencia de satélites debidas al acoplamiento de ¹³C con ²⁰⁷Pb. Por ejemplo, el carbono *ipso* C-5a muestra la presencia de satélites por acoplamiento a un enlace con valores ¹J¹³C — ²⁰⁷pb ⁼ 493.9 y 535.8 Hz para **12** y **13**, respectivamente. La asignación de los carbonos cuaternarios se realizó con ayuda de experimentos APT. En la figura 4.6 se muestra la numeración empleada en RMN de ¹³C para los compuestos **12** y **13**. En la figura 4.7-4.10 se ilustra el espectro de RMN de ¹³C y el espectro en dos dimensiones heteronuclear HETCOR [¹³C - ¹H] para el compuesto **12**.

Figura 4.6 Numeración empleada en RMN de ^{13C} para los compuestos 12 y 13.

Compuesto	D	C-1	C-2	C-3	C-4	C-1a	C-4a	C-5	C-5a	C-6	C-7
D(C ₆ H ₄ SH) ₂	S	132.4	128.3	126.6	130.2	135.0	132.5	-	-	ž	-
O(C ₆ H ₄ SH) ₂	0	126.7	124.5	130.2	118.6	123.7	152.1	-	-	+	-
Ph ₄ Pb	-	1	<u>.</u>	- - ⁴ .	122	1		137.6 ² J=67.4	150.2	129.5 ³ J=79.9	128.5 ⁴ J=19.1
D(CH ₂ CH ₂ S) ₂ PbPh ₂	S	-	-		-	-	-	135.8 ² J=87.5	158.7	129.9 ³ J=108.4	129.3 ⁴ J=24.3
D(CH ₂ CH ₂ S) ₂ PbPh ₂	0	-	5	-			-	135.6 ² J=88.4	158.7	129.9 ³ J=109.3	129.2 ⁴ J=19.1
12	S	134.8 ³ J=22.7	128.2	126.9	133.6	137.0 ² J=24.6	141.8 ³ J=34.6	135.4 ² J=94.2	160.4 ′J=493.9	130.3 ³ J=107.6	129.8 ⁴ J=25.8
13	0	135.1 ³ J=20.1	127.2	124.4	119.6	127.9 ² J=26.2	155.3 ² J=24.6	135.7 ² J=93.8	157.5 ⁷ J=535.8	130.2 ² J=113.8	129.9 ⁴ J=25.4

Tabla 4.2. RMN de ¹³C{¹H} desplazamiento químico (δ en ppm) para 1-5, en CDCl₃ y constantes de acoplamiento ${}^{n}J^{13}C - {}^{207}P_{b}$ a temperatura ambiente.

Figura 4.7. Espectro de RMN de ¹³C para el compuesto **12**, en CDCl₃ a temperatura ambiente.

Figura 4.8. Expansión del espectro heteronuclear en dos dimensiones HETCOR [¹³C - ¹H] del compuesto **12**, en CDCl₃ a temperatura ambiente.

Figura 4.9. Espectro de RMN de ¹³C para el compuesto **13**, en CDCl₃ a temperatura ambiente.

Figura 4.10. Expansión del espectro heteronuclear en dos dimensiones HETCOR [¹³C - ¹H] del compuesto **13**, en CDCl₃ a temperatura ambiente.
4.2.3 Estudios de difracción de rayos X de monocristal de los complejos 12 y 13.

Las estructuras cristalinas y moleculares en estado sólido de los complejos **12** y **13** fueron determinadas por difracción de rayos X de monocristal. Los datos cristalográficos correspondientes a la estructura para los compuestos **12** y **13** se muestran en la tabla 4.3.

Compuesto	12	13
Fórmula	C24H18PbS3	C24H18OPbS2
M [g/mol]	609.75	593.69
Tamaño (mm)	0.27×0.10×0.04	0.28x0.14x0.08
Sistema cristalino	Triclínico	Triclínico
Grupo espacial	P-1	P-1
$\rho_{\rm calc} ({\rm Mg \ m^{-3}})$	1.848	1.796
Z	2	2
a (Å)	9.945(4)	9.807(1)
b (Å)	10.383(5)	10.338(1)
<i>c</i> (Å)	11.354(5)	11.044(1)
α (deg)	72.367(1)	99.098(2)
β (deg)	79.010(9)	96.601(2)
γ (deg)	88.678(9)	90.472(3)
V	1095.3(7)	1097.8(2)
μ (mm ⁻¹)	7.989	7.886
<i>F</i> (000)	584	568
GooF	1.040	1.093
Corrección abs	SADABS	SADABS
Reflexiones colectadas	12564	13245
Reflexiones únicas Rint	3904, 0.0891	4286, 0.0325
R1, wR2 [I>2σ(I)]	0.0499, 0.1007	0.0314, 0.0734
R1, wR2 (todos datos)	0.0.0893, 0.1280	0.0438, 0.0869
Final $\Delta \rho$, max/min (e Å ⁻³)	1.268 / -0.755	0.888 / -0.608

Tabla 4.3. Datos cristalográficos correspondientes a las estructuras de los complejos 12 y 13.

A continuación se analizan las estructuras moleculares de los complejos **12** y **13** en función de parámetros geométricos tales como distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°).

4.2.3.1 Estructura molecular de los compuestos 12 y 13.

Simplicio González Montiel

En la figura 4.11 se muestran las estructuras moleculares de los compuestos **12** y **13**, señalando la numeración empleada. En la tabla 4.4 se presentan los valores de las distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los complejos **12** y **13**.

Tabla 4.4. Distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los compuestos S(C₆H₄S)₂PbPh₂ **12** y **13**.

compuesto	12	13
D	S3	01
D→Pb1	3.278(3)	3.050(4)
Pb1-S1	2.521(3)	2.529(2)
Pb1-S2	2.531(3)	2.535(1)
Pb1-C13	2.21(1)	2.206(5)
Pb1-C19	2.20(1)	2.214(5)
S1-C1	1.79(1)	1.777(5)
S2-C12	1.79(1)	1.771(6)
D-C6	1.78(1)	1.399(6)
D-C7	1.76(1)	1.397(6)
D→Pb1-C19	162.0(3)	150.0(2)
D→Pb1-C13	82.8(3)	85.6(2)
D→Pb1-S1	69.85(9)	65.39(7)
S1-Pb1-S2	106.5(1)	112.02(5)
C13-Pb1-C19	114.8(4)	123.7(2)
S1-Pb1-C19	99.5(3)	97.4(2)
S2-Pb1-C13	120.2(3)	111.9(1)
C6-D-C7	101.7(5)	118.0(4)
C1-C6-D-C7	62.6(1)	80.0(6)
C12-C7-D-C6	-132.6(9)	-151.4(4)
S1-Pb1-S2-C12	7.2(4)	1.6(2)
S2-Pb1-S1-C1	-92.8(4)	-80.2(2)

El análisis de la estructura molecular de los compuestos **12** y **13** muestra que las distancias Pb-S(tiolato) son similares con las informadas para otros heterociclos de ocho miembros y otros compuestos que en su estructura contienen enlaces plomo-azufre: [2.500(3), 2.502(2), 2.499(5) y 2.482(5) Å en **IIIPbI** que en la celda unitaria presenta dos moléculas cristalográficamente independientes en un sistema cristalino ortorrómbico, 2.514(5), 2.518(5), 2.519(6) y 2.491(5) Å en **IIIPb2** que en la celda unitaria presenta dos moléculas cristalográficamente independiente en un sistema cristalino triclínico,⁴ 2.515 Å en Ph₃PbSPh,⁷ 2.493(3), 2.481(4), 2.492(3), 2.517(4) y 2.495(4) Å en (o-Tol₂PbS)₃,⁸ 2.490(5), 2.523(4), 2.509(3), 2.496(4), 2.478(4) y 2.504(5) Å (*p*-Tol₂PbS)₃, 2.56(1) Å en (C₆H₅)₃PbS₂CNC₄H₈,⁹ 2.491(1) y 2.500(1) Å en Ph₂Pb(SSiMe₂)2,¹⁰ 2.591(1) y 2.560(1) Å en Ph₂Pb(S₂C₂S₂CS)¹¹ y 2.539(2) Å en Ph₃PbSOCC₆H₄Me³].

Las distancias Pb-C son similares a las encontradas en otros compuestos que contienen enlaces plomo-carbono como en Pli4Pb [2.201(1) Å].^{1,2,3,8-12} La estructura molecular de los compuestos **12** y **13** muestra que tomando en consideración únicamente los enlaces covalentes Pb-S y Pb-C el átomo de plomo se encuentra tetracoordinado con geometría tetraédrica.

La estructura molecular de los compuestos **12** y **13** muestra en adición a los enlaces covalentes esperados para el átomo de plomo (dos enlaces con los átomos de azufre del tipo tiolato y dos enlaces covalentes con los dos átomos de carbono) la existencia de una distancia que involucra una interacción intramolecular entre el átomo D y el átomo de Pb (D = S para **12**; O para **13**). Las distancias encontradas en los compuestos **12** y **13** para D \rightarrow Pb son 3.278(3) Å y 3.050(4) Å, respectivamente. Estas distancias son 32 y 39% más largas que la suma de los radios covalentes para **12** y **13**, respectivamente [$\Sigma r_{cov}(S,Pb) = 2.49$ Å; $\Sigma r_{vdw}(S,Pb) = 3.82$ Å; $\Sigma r_{cov}(O,Pb) = 2.20$ Å; $\Sigma r_{vdw}(O,Pb) = 3.54$ Å].^{13,14}La magnitud de esas distancias es consistente con la existencia de un enlace secundario.¹⁵ La distancia S \rightarrow Pb es aproximadamente del mismo orden que la encontrada en (C₆H₅)₃PbS₂CNC₄Hg [3.26(1) Å]¹⁰ donde el ligante ditiocarbamato actúa como un ligante anisobidentado y mas largas que las encontadas en los compuestos Ph₂Pb{S₂P(OCH₂Ph)₂ [2.941 y 2.958 Å]¹ y PbPh₂{S₂P(Ph)₂}2 [2.958 Å]² en donde los ligantes ditiofosfato y ditiofosfinato actúan como ligantes anisobidentados.

La distancia O \rightarrow Pb en 13 es más larga que las encontradas para las diferentes moléculas de los sistemas cristalinos ortorrómbico y triclínico del plumbocano O(CH₂CH₂S)₂PbPh₂ [0 \rightarrow Pb = 2.855(5) y 2.888(6) Å ortorrómbico **IIIPbI** y 2.92(1) y 3.08(l) Å triclínico IIIPb2]⁴ y en Ph₃PbSOCC₆H₄Me [2.990(4) Å].³

Tomando en consideración esta distancia transanular relativamente corta, se propone que el átomo de plomo presente en las dibenzoplumbocinas **12** y **13** experimenta un aumento en su número de coordinación, de tetracoordinado a pentacoordinado. Así, la geometría que adopta el átomo de plomo puede ser descrita como bipirámide trigonal (BPT), donde las posiciones axiales están ocupadas por un átomo de carbono *ipso* del grupo fenilo y por el átomo donador (D = S para **12**; O para **13**), mientras que las posiciones ecuatoriales son ocupadas por los átomos de azufre del tipo tiolato y el átomos del carbono *ipso* del otro grupo fenilo.

Para apoyar esta propuesta de aumento del número de coordinación del átomo de plomo es importante estimar el grado de desplazamiento de geometría ideal tetraédrica a bipirámide trigonal (BPT), utilizando algunos criterios como: **a**) El criterio de la distancia de la interacción D \rightarrow A propuesto por Holmes *et al.*^{16,17,18} **b**) El criterio mediante el uso de los seis ángulos de un tetraedro desarrollado por Draeger *et al.*^{19,20,21} y **c**) El criterio de la medida de la distancia del átomo central (Đ) con respecto al plano formado por las tres posiciones ecuatoriales.^{22,23,24} Los resultados obtenidos son mostrados en la tabla 4.5.

Para poder establecer la magnitud de la interacción intramolecular $D \rightarrow Pb$ fue utilizado el criterio de orden de enlace intramolecular *(oe)* propuesto Pauling ⁵ obtenido a través del incremento de la distancia entre los átomos $D \rightarrow A$. Los resultados obtenidos son mostrados en la tabla 4.5.

Tabla 4.5. Comparación de los parámetros geométricos los compuestos 12 y 13, longitud de enlace (Å), D \rightarrow Ge-C(19) (°), desplazamiento de BPT (%), $\Delta\theta$ (°), D (Å) y orden de enlace (*oe*).

Compuesto	D	D→Pb-C19 (°)	Pb-C19 (Å)	D→Pb (Å)	BPT" (%)	$\Delta \theta^b$ (°)	D^{c} (Å)	<i>ое^d</i> РЬ-С19	Δd^e D \rightarrow Pb (Å)	<i>oe^d</i> D→Pb
12	S	162.0(3)	2.20(1)	3.278(3)	40.7	15.0	0.708	1.14	0.788	0.077
13	Ο	150.0(2)	2.214(5)	3.050(4)	36.6	11.7	0.799	1.09	0.85	0.063
^a Si D \rightarrow Pb = $\Sigma r_{vdW}(D\rightarrow$ Pb) la geometría tiene carácter de T _d , si D \rightarrow Pb = Σr_{cov} (D \rightarrow Pb) la geometría tiene carácter de BPT. ¹⁷⁻¹⁹ [$\Sigma r_{vdW}(S,Pb)$ = 3.82 Å], [$\Sigma r_{vdW}(O, Pb)$ = 3.54 Å], [$\Sigma r_{cov}(S,Pb)$ = 2.49 Å], [$\Sigma r_{cov}(Pb, O)$ = 2.20 Å]. ^{14,15}										
${}^{b}\Delta\theta = \Sigma \theta_{eq} - \Sigma \theta_{ax}$, \therefore si $\Delta \theta = 0^{\circ}$ la geometría es T _d , si $\Delta \theta = 90^{\circ}$ la geometría es BPT. ²⁰⁻²² ${}^{c}Si \mathcal{D} = 0.73$ Å la geometría es T _d , si $\mathcal{D} = 0.00$ Å la geometría es BPT. ^{23-25,26} ${}^{e}oe = 10^{-(1.41 \ Ad)}$. ²⁶										

El análisis de estos valores de BPT %, de A/9, de D y del orden de enlace *(oe)* indica que el compuesto que presenta el mayor desplazamiento de geometría BPT, el mayor $\Delta \theta$, el menor Đ y el mayor orden de enlace *(oe)* se encuentra en eí compuesto **12**, donde el átomo donador es azufre. Sin embargo, estos valores son pequeños por lo que se concluye que la interacción transanular es débil en las dibenzoplumbocinas **12** y **13**. Esta interacción débil es atribuida a la presencia de los dos grupos temió unidos al átomo de plomo.

La conformación que adopta el anillo de ocho miembros en las dibenzoplumbocinas **12** y **13** se puede describir como bote torcido con simetría C_1 .^{27,28} Esta descripción está basada en la no equivalencia de los ángulos de torsión de los sistemas formados por los enlaces carbono-azufre (tioéter) [C-S-Pb-S] y por los enlaces plomo-azufre(tiolato) [C-D-C-C] para las dos mitades del anillo. Para el primer sistema, las diferencias se encuentran en el intervalo 70.0 a 71.4° mientras que el intervalo para el segundo sistema va de 78.6 a 85.6°. En los dos compuestos el anillo de ocho miembros se encuentra distorsionado (Figura 4.12).

Figura 4.12. Ángulos de torsión (°) del anillo de ocho miembros de los compuestos 12 y 13.

4.2.3.2 Estructura cristalina de los compuestos 12 y 13.

El gran tamaño del átomo de plomo y la presencia de átomos donadores (azufre) permitiría en principio que los compuestos **12** y **13** presentaran asociaciones intermoleculares. En la celda unitaria del compuesto **12** se encontraron distancias interatómicas menores a la suma de los radios de van der Waals entre el átomo de plomo y un átomo de azufre relacionados por simetría, dando como resultado asociaciones diméricas con distancias intermoleculares Pb"*S iguales a 3.782(3)Å [$\Sigma r_V dw(Pb,S) = 3.82$ Å].^{14,15} También se encontró la existencia de una interacción intramolecular entre el átomo de azufre de tipo tioéter y el átomo de plomo (S3•••Pb) 3.278(3) Å la distancia encontrada es significativamente menor a la suma de los radios de van der Waals [$\Sigma r_{vd}w$ (S,Pb) =3.82 Å].^{14,15} Lo anterior se muestra en las figuras 4.13 y 4.14. Tomando en consideración las interaciones inter- e intramplecular el átomo de plomo se encuentra hexacoordinado con una geometría que puede ser descrita como octaédrica distorsionada. En la figura 4.15 y en la tabla 4.6 se muestran los ángulos alrededor del átomo de plomo hexacoordinado.

Figura 4.13. Celda unitaria del compuesto S(C₆H₄S)₂PbPh₂, **12**.

Figura 4.14. Estructura dimérica del compuesto **12**, contacto intermolecular S2A•••Pb1B 3.782(3) Å (los átomos de hidrógeno fueron omitidos).

Figura 4.15. Geometría adoptada por el átomo de plomo hexacoordinado en el arreglo cristalino de el compuesto **12**.

Tabla 4.6. Ángulos de enlace (°)	alrededor	del átomo	de plomo	hexacoord	inado
en	el compue	sto 12.			

Átomos	Ángulos	Átomos	Ángulos	Átomos	Ángulos
S3A-Pb1A-C19A	162.0(3)	C13A-Pb1A-C19A	114.8(4)	S2B-Pb1A-S2A	58.8(2)
S3A-Pb1A-C13A	82.8(3)	S1A-Pb1A-C19A	99.5(3)	S2B-Pb1A-S3A	102.3(8)
S3A-Pb1A-S1A	69.85(9)	S2A-Pb1A-C13A	120.2(3)	S2B-Pb1A-C13A	82.5(3)
S1A-Pb1A-S2A	106.5(1)	S2B-Pb1A-S1A	165.30(9)	S2B-Pb1A-C19A	84.5(2)

Las interacciones π - π juegan un papel importante en la determinación de la estructura, estabilidad y empaquetamiento cristalino de los sistemas que participan. En sistemas donde participan dos grupos arilo han sido ampliamente documentado y pueden mostrar diferentes orientaciones.²⁹ Entre las orientaciones mas comunes de la interacciones π - π se pueden mencionar las siguientes; a) Interacciones *tipo-T*, las cuales presentan arreglos perpendiculares en los anillos aromáticos, b) Interacciones *paralelo desplazadas* y c) Interacciones paralelas cara-cara {*tipo sandwich o arreglos paralelo eclipsados*} (Figura 4.16).

La celda unitaria del compuesto **13** no presenta distancias intermoleculares entre los átomos no hidrogenoides menores a la suma de los radios de van der Waals, por lo que este compuesto es esencialmente monomérico. Esta ausencia de interacciones intermoleculares puede ser debida a la presencia de interacciones π - π a través de dos grupos fenilos relacionados por simetría entre los centroides de 4.433 Å con orientación cara-cara *{tipo sandwich o arreglos paralelo eclipsados)*, en las figuras 4.17 y 4.18 se muestra la celda unitaria y las interacciones *n*-*n* del compuesto 13.

a b c Figura 4.16 Interacciones π-π: a) *tipo-T*, b) *paralelo desplazadas* y c) paralelas cara-cara (*tipo sándwich o arreglos paralelo eclipsados*)

Figura 4.17. Celda unitaria del compuesto O(C₆H₄S)₂PbPh₂, 13.

Figura 4.18. Interacciones π - π en el compuesto 13.

4.3 Conclusiones.

Con base en los resultados obtenidos en esta parte del trabajo de investigación se puede considerar que la presencia de los grupos fenilo unidos al átomo central de plomo en las dibenzoplumbocinas 12 y 13 ocasionan un debilitamiento de la interacción transanular, sin llegar a eliminarla por completo, apoyado esto último por el valor de la distancia $D \rightarrow Pb$ y por el análisis de los parámetros estructurales derivados de ella tales como el desplazamiento de BPT(%), A0, $\Delta \theta y$ el orden de enlace *oe* (Ver tabla 4.5).

En los compuestos **12** y **13** se observa que el átomo de azufre es mejor donador que el átomo de oxígeno hacia plomo, existiendo una mayor interacción S \rightarrow Pb que es consistente con el mayor desplazamiento de BPT de 40.7 %, *oe* de 0.077, un $\Delta \theta$ 9 de 15.0 ° y Đ de 0.708 Å a para el complejo **12**, con respecto al desplazamiento de BPT del 36.6 %, *oe* de 0.063, un $\Delta \theta$ de 11.7 ° y Đ de 0.799 Å calculados para **12**.

Los valores calculados de desplazamiento BPT (%) y el *oe* son relativamente pequeños por lo que se concluye que la interacción transanular ($D \rightarrow Pb$) en las dibenzoplumbocinas **12** y **13** es débil lo cual es atribuida a la presencia de los dos grupos fenilo unidos al átomo de plomo que reducen su acidez, este fenómeno también es observado en las dibengermocinas y - estanocinas difeniladas.

4.4 Parte Experimental.

4.4.1 Preparación de las dibenzoplumbocinas 12 y 13.

Consideraciones Generales. Todas las reacciones se llevaron a cabo un una atmósfera de dinitrógeno libre de oxígeno y humedad mediante el uso técnicas de Schlenk ³⁰. Los disolventes fueron secados y destilados antes de su uso por métodos convencionales. Los puntos de fusión se determinaron en un aparato Melt-Temp II y se informan sin corregir. Los análisis elementales fueron realizados en un equipo Perkin Elmer Series II CHNS/O Analyzer. Los espectros se obtuvieron de los siguientes instrumentos: Los espectros de IR se obtuvieron en el rango 4000-400 cm⁻¹ en un espectrófotometro FT-IR Perkin-Elmer System 2000, como pastillas de KBr. Los espectros de RMN de ¹H y ¹³C{¹H} se obtuvieron en un espectrómetro JEOL Eclipse 400 a 25 °C a una frecuencia de ¹H 399.78 MHz y ¹³C{¹H}; 100.53 MHz. Los desplazamientos químicos (δ) se reportan en ppm, utilizando como referencia TMS. Los espectros fueron obtenidos a temperatura ambiente. Los ligantes S(C₆H₄SH)₂ y O(C₆H₄SH)₂ fueron preparados de acuerdo a los métodos de síntesis reportados.^{7,8} El Ph₂PbCl₂ fue adquirido de Alfa Aesar y ⁿ-BuLi (1.6 M, en hexanos) fue adquirido de Aldrich, los cuales fueron utilizados como se recibieron.

Precauciones: Los compuestos de plomo son altamente tóxicos y acumulativos en el organismo, por lo cual los compuestos se deben de manejar cuidadosamente.

 $S(C_6H_4S)_2PbPh_2$ (12): A una suspensión blanca de Ph₂PbCl₂ (0.52 g, 1.2 mmol) en THF (30 mL) en un baño de hielo y con agitación, le fue adicionada una solución que contenía la sal dilitiada S(C6H4SLi)₂ previamente preparada a partir de S(C6H4SH)₂ (0.3 g, 1.2 mmol) en THF (40 mL) yⁿ⁻ BuLi en hexanos ((1.6 M, 1.7 mL, 2.7 mmol) mediante agitación y enfriamiento durante 30 min en un baño de hielo dando como resultado una solución de color rojo. Con la adición lenta de la sal dilitiada, la suspensión blanca en THF comienza a desaparecer y al final de la adición (30 min) se obtiene una solución homogénea amarilla. La agitación continúa durante 24 h, obteniéndose en este tiempo una suspensión blanca que se colocó a reflujo durante 2 h. La suspensión obtenida se llevó a enfriamiento a temperatura ambiente. El LiCl que precipitó fue removido por filtración a gravedad. La solución amarilla resultante se hizo pasar por una columna de Celita y Na₂SO₄. La mezcla de disolventes fue removida con la ayuda de vacío, produciendo un polvo de color amarillo que fue disuelto en cloroformo (25 mL). Por evaporación lenta se obtiene a 12 como cristales amarillos, que fueron lavados con ¹PrOH caliente (40 mL) y filtrados por succión. Rendimiento: 68 % (0.50 g, 0.82 mmol). P.f: 290-294 °C. Análisis elemental para S(C₆H₄S)₂PbPh₂; Calculado C, 47.27, H 2.98; Encontrado C 47.10, H 3.05. RMN 'H (CDC1₃): $\delta = 7.06$ (dd, $W = {}^{3}JHV = 7.60$ Hz, ${}^{4}J_{H}{}^{3}-{}_{H}{}^{1} = 1$ -40 Hz, 2 H, H³), 7.20 (ddd, $V_{-H}^{-1} = W = 7.60$ Hz, $V_{-H}^{-4} = 1.40$ Hz, 2 H, H²), 7.33 (m, 2 H, H⁷), 7.44 (m, 6 H, H⁴) y H"⁶), 7.67 (m, 6 H, H⁴ y H⁵ ³j'H-^{2<)7}pb = 120 Hz) ppm. RMN ¹³C {1H} (CDC1₃): δ = 126.9, 128.2, 129.8 [⁴J(¹³c-²⁰⁷p_b) = 25.8 Hz], 130.3 [³J(ⁱ³c-²⁰⁷pb) = 107.6 Hz], 133.6, 134.8 [³J(¹³c-²⁰⁷p_b) = 22.7 Hz], 135.4 [²J(¹³c-²⁰⁷p_b) = 94.2 Hz], 137.0 [²J(¹³c-²⁰⁷Pb) = 24.6 Hz], 141.8 [³J(¹³c-²⁰⁷p_b) = 34.6 Hz], 141.8 [³C(¹³c-²⁰⁷p_b) = 34.6 Hz], 1 Hz], 160.4 $[{}^{1}J({}^{13}c-{}^{2}o^{7}pb) = 493.9$ Hz] ppm. IR (pastilla de KBr, cm"):3057, 3040, 1565, 1471, 1438, 1430, 1242, 1099, 1040, 1011, 994, 840, 746, 720, 687.

 $O(C_6H_4S)_2PbPh$ (13): Se preparó siguiendo la misma metodología que para el compuesto 12. Ph₂PbCl₂ (0.50 g, 1.15 mmol) en THF (30 mL), $O(C_6H_4SH)_2$ (0.27 g, 1.15 mmol) en THF (40

mL) y ⁿ⁻BuLi en hexanos ((1.6 M, 1.6 niL, 2.6 mmol) cloroformo (25 mL). Produciendo **13** como cristales amarillos. Rendimiento: 66 % (0.45 g, 0.76 mmol). P.f: 115-119 °C. RMN 'H (CDC1₃): $\delta = 6.82$ (m, 2 H, H⁴), 7.02 (m, 4 H, H² y H³), 7.29 (m, 2 H, H⁷), 7.40 (t, 4 H, ³J_H⁶-H⁵ = ³JH⁶-H⁷ = 7.52 Hz, 4 H H⁶), 7.57 (m, 2 H, H¹). 7.62 [d, 4 H, ³J_H⁵-H⁶ = 7.52 Hz, ³J(¹_H-²⁰⁷Pb) = 107 Hz, H⁵) ppm. RMN ¹³C{1H} (CDC13): $\delta - 119.6$, 124.4, 127.2, 127.9 [²J(¹³c-²⁰⁷pb) = 26.2 Hz], 129.9 [⁴J(¹³c-²⁰⁷Pb) = 25.4 Hz]. 130.2 [³J(¹³c.²⁰⁷pb) = H3.8 Hz], 135.1 [³J(³c-²⁰⁷pb) = 20.1 Hz], 135.7 [²J(¹³c-²⁰⁷pb) = 93.8 Hz], 155.3 [³J(³c.²⁰⁷pb) = 19.2 Hz], 157.5 [W⁰⁷) = 535.8 Hz] ppm. IR (pastilla de KBr, cm⁻¹): 3063, 1693, 1568, 1461, 1433, 1430, 1260, 11025, 1011, 968, 800, 755, 727, 691.

4.4.2 Cristalografía de rayos X de $S(C_6H_4S)_2PbPh_2(12)$ y $O(C_6H_4S)_2PbPh_2$ (13).

Los cristales de los compuestos **12** y **13** se obtuvieron por evaporación lenta de una solución de cloroformo. Los datos de los de difracción de rayos X de los compuestos **12** y **13** fueron colectados a temperatura ambiente en un difractómetro CCD Smart 6000 usando una radiación de *Mo-Ka* ($\lambda = 0.71073$ Å, monocromador de grafito). Los datos obtenidos fueron tratados utilizando el paquete de software SMART. La solución primaria de la estructura de 13 fue realizada por el método de átomos pesados con SHELXS86³¹ y refinada con la suite de programas SHELXTL Versión 6.14. La estructura de **12** fue resuelta por método directos y refinada con la suite de programas SHELXTL Versión 6.14. En ambos casos se utilizó el refinamiento de mínimos cuadrados F^{2.32} Se aplicó corrección por absorción mediante el uso del programa SADABS 2004.³³ Los parámetros de desplazamiento de los átomos no hidrogenoides fueron refinados anisotrópicamente. La posición de los átomos de hidrogeno fueron fijadas con un parámetro isotrópico común.

Bibliografía

- ¹ M. G. Begley, C. Gaffney, P. G. Harrison, A. Steel, J. Organomet. Chem., 1985, 289, 28.
- ² S. N. Olafsson, T. N. Petersen, P. Andersen, Acta Chem. Scand., 1996, 50, 745.
- ³ K. Tani, S. Kato, T. Kanda, S. Inagaki, Org. Lei!., 2001, 3, 655.
- ⁴ D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem. 1999, 1715-25
- ⁵ S. González Montiel, N. Andrade López, G. Merino, A. Vela, J. G. Alvarado Rodríguez, *Eur.*, *Inorg. Chem.* **2003**, 3554.
- ⁶ M. J. Vaickus, D. G. Anderson, Org. Magn. Reson., 1980, 14, 278.
- ⁷ M. G. Begley, C. Gaffney, P. G. Harrison, A. Steel, J. Organomet. Chem., 1985, 289, 281.
- ⁸ H. Stenger, B. M. Schmidt, M. Draeger, Organometallics, **1995**,14, 4374.
- ⁹ E. M. Holt, F. A. K. Nasser, A. Wilson, J. J. Zuckerman, Organometallics, 1985, 12, 2073.
- ^D U. Herzog, G. Rheinwald, J. Organomet. Chem., 2002, 648, 220.
- ¹ J. M. S. Skakle, J. L. Wardell, S. M. S. V. Wardell, [^]cta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 787.
- ² C. Schneider Koglin, B. Mathiasch, M. Draeger, J. Organomet. Chem., 1994, 469, 25.
- ^B W. W. Porterfield, *Inorganic Chemistry: A Unified Approach*, Segunda Edición, Academic Press, Inc. USA **1993**, p. 214.
- ⁴ A. Bondi, J. Phys. Chem., **1964**, 68, 441.
- ⁵ N. W Alcock, Advan. Inorg. Chem. Radiochem., **1972**, 75, 1.
- ⁶ A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1999**, *38*, 3369-3376
- ¹ N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1998**, *37*, 3862-3867.
- ⁸ D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082-5089.
- ⁹ U. Kolb, M. Draeger, B. Jousseaume, *Organometallics*, **1991**, 10, 2737.
- ²⁰ U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics, 1994, 13, 4413.
- ² U. Kolb, M. Beuter, M. Draeger, *Inorg. Chem.*, **1994**, *33*, 4522.
- ²² U. Kolb, M. Beuter, M. Draeger, *Inorg. Chem.*, **1994**, *33*, 4522.
- ²³ H. B. Bürgi, *Inorg. Chem.*, **1973**, *12*, 2321.
- ²⁴ D. Britton, J. D. Dunitz, J. Am. Chem. Soc. **1981**,103, 2971.
- ²⁵ L. Pauling, *The Nature of the Chemical Bond*, Tercera Edición, Cornell University, Ithaca, **1960**, Cap. 7.
- ²⁶ a).- H. Preut, F. Huber, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., **1993**, 49, 1372. b).- C.
- Schneider Koglin, B. Mathiasch, M. Draeger, J. Organomet. Chem., 1994, 469, 25.
- ²⁷ T. Thompson, S. D. Pastor, G. Rihs, *Inorg. Chem.*, **1999**, *38*, 4163.
- ²⁸ S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H. F. Hsu, *Inorg. Chem.*, **1997**, *36*, 5966.
- ²⁹ a).- C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc, **1990**,112, 5525. b).- W. B. Bennings,
- B. M. Farrell, J. F. Malone, Acc. Chem. Res. 2001, 34, 885. c).- G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky, R. H. Grubbs, J. Am. Chem. Soc, 1998, 120, 3641. d).- S. M. Butterfield, P. R. Patel, M. L. Waters, J. Am. Chem. Soc, 2002, 124, 9752.
- ⁰ W. L. F. Armarego y D. D. Perrin, *Purification of Laboratory Chemicals*, Butterworth Heinemann, Cuarta Edición, Great Britain, **1999.**
- ³ SHELXS86, G. M Sheldrick, *In "Crystallographic Computing 3"*, Ed. G. M. Sheldrick, C. Kruger, R. Goddard, Oxford University Press, **1985**, 175.
- ³² SHEXTL 5.10 Bruker AXS, Inc. Madison. WI. USA, **1998.**
- ³³ SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc. Madison, WI, 2004.

Capítulo 5 Estudio estructural de dibenzotritiarsocinas

En el presente capítulo se describe la síntesis y el estudio estructural de tres dibenzotritiarsocinas monohalogenadas (Figura 5.1).

	Hal	Nombre
14	Cl	2-clorodibenzo[d,g][1,3,6,2]-tritiarsocina
15	Br	2-bromodibenzo[d,g][1,3,6,2]-tritiarsocina
16	Ι	2-yododibenzo[d,g][1,3,6,2]-tritiarsocina

Figura 5.1. Dibenzotritiarsocinas monohalogenadas.

5.1 Antecedentes.

El estudio del aumento del número de coordinación del átomo de arsénico a través de interacciones intramoleculares con un átomo donador (D \rightarrow As) ha sido ampliamente desarrollado en compuestos denominados arsocanos donde el átomo D = O o S y el ligante exocíclico puede ser monodentado o bidentado (Figura 5.2). La caracterización estructural mediante estudios de difracción de rayos X de monocristal de estos compuestos ha mostrado la existencia de interacciones intramoleculares transanulares entre los átomos D y As (Para más detalles ver la sección 1.5.4 del capítulo 1). Debido a la presencia de estas interacciones D \rightarrow As en los arsocanos, el arsénico aumenta su número de coordinación de tricoordinado a tetra- o pentacoordinado cuando el ligante exocíclico actúa como mono- o bidentado, dependiendo si los ligantes son monodentados (halógenos) o bidentados (ditiofosfato, ditiocarbamato o ditiofosfinato).¹⁻⁶

A continuación se analizan y discuten los resultados obtenidos en el presente trabajo con respecto al estudio del aumento del número de coordinación del átomo de arsénico presente en dibenzotritiarsocinas.

5.2 Resultados y discusión.

5.2.1 Síntesis de los compuestos 14—16.

El ligante $S(C_6H_4SH)_2$ fue sintetizado de acuerdo al método reportado.⁷ De la reacción de $S(C_6H_4SH)_2$ con AsCl₃ en benceno se produce al compuesto $S(C_6H_4S)_2AsCl$ (14) como cristales incoloros. Los derivados bromado $S(C_6H_4S)_2AsBr$ (15) y yodado $S(C_6H_4S)_2AsI$ (16) se obtuvieron de la reacción de intercambio de halógeno siguiendo la misma metodología reportada para sus homólogos dibenzoestibocínicos.⁸ De esta manera, los compuestos 15 y 16 fueron sintetizados a partir del compuesto clorado 14 con un exceso de KBr/HBr o KI en benceno a reflujo, produciendo a 15 como cristales incoloros y a 16 como cristales de color amarillo pálido, respectivamente (ver esquema 5.1 y detalles en la parte experimental).

Esquema 5.1. Síntesis de las dibenzotritiarsocinas 14-16.

Las dibenzotritiarsocinas obtenidas son estables al aire, solubles en benceno y cloroformo e insolubles en hexano e isopropanol.

5.2.2 Espectrometría de masas de 14-16.

Los espectros EM-IE de los compuestos **14-16** fueron obtenidos a 70 eV. Los espectros de **14** y **15** muestran un fragmento con baja intesidad y con la relación isotópica esperada para el ion molecular $[S(C_6H_4S)_2A_5Hal]^+$; para el compuesto **16** bajo estas condiciones no se observó el ion molecular. En todos los casos se observó un fragmento en m/z = 323 el cual es asignado a la pérdida del átomo de halógeno en los compuestos **14 - 16**, produciendo el fragmento que corresponde al sistema tricíclico $S(C_6H_4S)_2A_5[M^{++} - Hal]$. En todos los espectros se observan los picos que corresponden a los siguientes fragmentos: m/z = 248 $[S(C_6H_4S)_2^{++}]$ y 216 $[S(_6H_4S)^{++}]$. Los demás picos presentes en los espectros no se lograron asignar, debido a que se presentan conjuntos más complejos de baja intensidad, en el esquema 5.2 se muestra la fragmentación de las dibenzotritiarsocinas **14-16**.

Compuesto	Hal	m/z	int	Compuesto	m/z	int
14	Cl	358	(30)	14	323	(70)
15	Br	402	(7)	15	323	(100)
16	Ι	-	-	16	323	(100)

Esquema 5.2. Fragmentación de las dibenzotritiarsocinas 14-16.

5.2.3 Espectroscopia vibracional.

Los espectros Raman de los compuestos **14-16** en estado sólido fueron obtenidos por luz dispersada con una longitud de onda de 1579.8 nm producida por un láser de argón ionizado. Bajo las condiciones anteriores los compuestos **14** y **15** experimentaron fotodescomposión producida por el láser. Los espectros de IR en el intervalo de 4000 - 200 cm⁻¹ de los compuestos **14** - **16** fueron obtenidos en una pastilla de Csl. El espectro Raman del compuesto $S(C_6H_4S)_2AsI$ (**16**) se muestra en la Figura 5.3.

Del espectro Raman además de observar las bandas del anillo aromático, se observaron algunas bandas por debajo de 400 cm⁻¹. En la región comprendida entre 400-300 cm⁻¹ se observaron dos bandas muy intensas las cuales son asignables a los modos de vibración asimétrico y simétrico de los grupos S-As-S. Con el fin de confirmar las asignaciones de las bandas de los compuestos de arsénico, fueron comparadas con las que muestran sus compuestos análogos con antimonio $[D(C_6H_4S)_2AHal; D = S, O; A = As, Sb]$ (Figura 5.4).⁹

Figura 5.3. Espectro Raman del compuesto S(C₆H₄S)₂AsI, 16.

A = As, SbFigura 5.4. Dibenzometalocinas $[D(C_6H_4S)_2AHal; D = S, O; A = As, Sb].$

Los datos encontrados para las espectroscopias Raman e IR son mostrados en la tabla 5.1. Para el caso de los complejos de arsénico, la diferencia (Δ) entre la v_{asi} - $v >_{sim}$ tiene un valor promedio de 59 ± 3 cm⁻¹, mientras que en los complejos de antimonio con el átomo donador igual a azufre la Δ $es 46 \pm 3 cm^{-1}$.

D	A-Hal	Espectroscopía	v_{asim}	v_{sim}	$\Delta (v_{asim} - v_{sim})$
S	As-Cl	IR	380	326	54
		Raman	b	b	-
S	Sb-Cl ^a	IR	371	330	41
		Raman	370	328	42
S	As-Br	IR	387	325	62
		Raman	b	b	-
S	Sb-Br ^a	IR	371	327	44
		Raman	373	322	51
S	As-I	IR	380	320	60
		Raman	380	321	59
S	Sb-I ^a	IR	372	325	47
		Raman	372	323	49
Ο	Sb-Cl ^a	IR	369	316	53
		Raman	370	311	59

Tabla 5.1. Frecuencias de vibración $[cm^{-1}]$ para el grupo S-A-S de D(C₆H₄S)₂AHal.

a) Dibenzoestibocinas⁹ b) No medida

Con el objetivo de establecer la presencia de la banda de vibración del grupo As-Hal, se empleó la aproximación de Varshni¹⁰ reportada para una serie de metalocanos que contienen a átomos del grupo 15 [A = As, Sb y Bi] enlazados a un halógeno, la cual hace uso de la longitud del enlace A-Hal encontrada por difracción de rayos X de monocristal. El tratamiento de Varshni fue empleado para calcular la frecuencia de vibración de los compuestos **14-16**, el cual produjo los siguientes valores de frecuencia para el enlace As-Hal: 362 cm⁻¹ para **14**, 241 cm⁻¹ para **15** y 172 cm⁻¹ para **16**. En el espectro de IR de los compuestos **14** y 15 se observaron bandas en 392 y 280 cm⁻¹ que corresponden a las bandas de vibración As-Cl y As-Br, respectivamente. Estos valores experimentales son mayores a los calculados por el tratamiento de Varshni, por lo que la asignación de estas bandas se realizó de acuerdo a los parámetros reportados por Sócrates¹¹

La frecuencia calculada para la vibración As-I en el compuesto **16** de 172 cm⁻¹ no se observó en los espectros de IR y Raman. El espectro Raman se observó una banda intensa en 205 cm⁻¹ que es asignada a la frecuencia de vibración As-I.¹¹ Lo anterior es propuesto, con base en las observaciones realizadas por Draeger *et al*¹⁰ que señalan que las bandas más intensas A-Hal observadas en sus series estudiadas pertenecen a los complejos que presentan enlaces A-I. Los datos del análisis vibracional confirmaron la tendencia esperada que indica que a mayor masa del halógeno unido al arsénico, menor será la frecuencia de vibración del enlace As-Hal.

Las fórmulas y datos utilizados para el calculo de la frecuencia de vibración de sistemas A-Hal, de acuerdo la aproximación de Varshni,¹⁰ son los siguientes;

 $d = \left[\sqrt{k_1}\right] \left[1/\sqrt{f(d)}\right] + k_2$ donde: d = distancia del enlace A-Hal obtenida de rayos X de monocristalf(d) = constante de fuerza del enlace A-Hal

Halógeno	Constante de Varshni					
υ.	k_1 (mydn Å)	$k_2(\text{\AA})$	x^2			
Cl	15.448	-0.587	0.879			
Br	2.356	1.147	0.973			
I	0.374	1.015	0.975			

 $f(d) = [(\nu/1303)^2] \mu \text{ despejando } \nu = 1303 [\sqrt{f(d)}/\mu]$ donde: f(d) = constante de fuerza del enlace A-Hal $\nu = \text{frecuencia de vibración}$ $\mu = \text{masa reducida para el sistema A-Hal.}$

 $\mu = [A (As/Sb/Bi) \times Hal (Cl/Br/I)] / [A (As/Sb/Bi) + Hal (Cl/Br/I)]$

5.2.4 Espectroscopia de Resonancia Magnética Nuclear.

5.2.4.1 Resonancia Magnética Nuclear de H de los complejos 14-16.

Los espectros de RMN de ¹H de los compuestos **14-16** se obtuvieron en soluciones de CDCI₃ a temperatura ambiente y los δ son relativos al TMS. Las asignaciones de los complejos fueron hechas con ayuda de experimentos en dos dimensiones heteronuclear y homonuclear (HETCOR, COLOC y COSY).

Los espectros de RMN de ¹H de los compuestos **14-16** muestran cuatro grupos de señales en un patrón ABCD típico para anillos de benceno orto-sustituidos, lo cual demuestra que en solución las dos mitades $S(C_6H_4SAs)$ son equivalentes. Los datos obtenidos se muestran en la tabla 5.2. La figura 5.5 muestra la numeración empleada en RMN de ¹H para los compuestos **14-16**. Para el caso del compuesto **14** desaparecido la señal del protón del grupo SH del ligante ($S(C_6H_4SH)_2$, 4.10 ppm, en CDCI₃),⁷⁻⁸ lo cual apoya la formación de los enlaces S(tiolato)-As. En todos los compuestos los protones H-2, H-3 y H-4 se encuentran desplazados a frecuencias más altas con respecto al ligante. ⁷⁻⁸ La figura 5.6 muestra el espectro de RMN de H para el compuesto **14**, que es representativo para los compuestos **14-16**.

Tabla 5.2. RMN de ¹H desplazamiento químico (δ , ppm) para los compuestos **14–16** a temperatura ambiente

Compuesto	Hal	H-1	H-2	H-3	H-4
S(C ₆ H ₄ SH) ₂	-	7.45-7.35	7.25-7.0	7.25-7.0	7.25-7.0
14	C1	7.56	7.29	7.21	7.53
15	Br	7.53	7.29	7.21	7.54
16	Ι	7.48	7.28	7.21	7.52

Hal = Cl(14), Br(15), l(16) Figura 5.5. Numeración empleada para RMN de ¹H para los compuestos 14–16.

Figura 5.6. Espectro de RMN de ¹H del compuesto **14**, en CDCl₃ a temperatura ambiente.

5.2.4.2 Resonancia Magnética Nuclear de ¹³C de los complejos 14-16.

El espectro de RMN de ¹³C{¹H} a temperatura ambiente para los compuestos **14** - **16** muestran seis señales que pertenecen al anillo *orto* sustituido del sistema dibenzotritiarsocina, confirmando que en solución las dos mitades $S(C_6H_4SAs)$ son equivalentes. Los datos obtenidos de los espectros de RMN de ¹³C{¹H} para los compuestos **14-16** se muestran en la tabla 5.3 y la figura 5.7 muestra la numeración empleada. Los espectros muestran que el carbono *ipso* C-la presenta un importante efecto paramagnético, causando un incremento en el desplazamiento químico en el orden de 8.6, 7.9 y 7.3 ppm para **14**, **15** y **16**, respectivamente con respecto al ligante libre neutro. ^{7,8} Otra característica importante es que el C-la presenta un pequeño efecto de desprotección debido al aumento de la electronegatividad del halógeno. En las figuras 5.8 y 5.9 se presentan los espectros de RMN de ¹³C{¹H} y heteronuclear en dos dimensiones HETCOR [¹³C - ¹H] para el compuesto 14.

Hal = Cl(14), Br(15), I(16) Figura 5.7. Numeración empleada en RMN de 13 C para los compuestos 14–16.

Tabla 5.3. Desplazamiento químico de RMN de ${}^{13}C{}^{1}H$ (δ , ppm) para los compuestos **14–16** a temperatura ambiente.

			1				
Compuesto	Hal	C-1	C-2	C-3	C-4	C-la	C-4a
S(C ₆ H ₄ SH) ₂	-	132.4	128.3	126.6	130.2	135.0	132.5
14	Cl	134.7	130.0	127.7	130.9	143.6	131.7
15	Br	134.9	130.0	127.6	130.7	142.9	131.6
16	Ι	135.3	129.9	127.7	130.7	141.6	131.9

Figura 5.9. Ampliación del espectro heteronuclear en dos dimensiones HETCOR [¹³C - ¹H] para el compuesto 14, en CDCl₃ a temperatura ambiente.

5.2.5 Estudios de difracción de rayos X de monocristal de las dibenzotritiarsocinas 14-16

Las estructuras cristalinas y moleculares en estado sólido de los complejos **14-16** fueron determinadas por difracción de rayos X de monocristal. Los datos cristalográficos correspondientes a la estructura para los compuestos 14-16 se muestran en la tabla 5.4.

Compuesto	14	15	16
Fórmula	C12H8AsClS3	C12H8AsBrS3	C ₁₂ H ₈ AsIS ₃
M g/mol	358.73	403.19	450.18
Tamaño (mm)	0.60×0.09×0.09	0.50×0.05×0.04	0.17×0.13×0.07
Sistema cristalino	Ortorrómbico	Monoclínico	Ortorrómbico
Grupo espacial	$Pmn2_I$	$P2_1/c$	Pnma
$\rho_{\rm calc} ({\rm Mg \ m^{-3}})$	1.778	1.987	2.135
Z	2	4	4
a (Å)	17.306(5)	4.5694(10)	19.062(2)
b (Å)	8.533(2)	17.148(4)	15.8609(17)
c (Å)	4.5381(12)	17.218(4)	4.6332(5)
α (deg)	90	90	90
β (deg)	90	92.167(6)	90
γ (deg)	90	90	90
$V(Å^3)$	670.1(3)	1348.1(5)	1400.8(3)
$\mu (mm^{-1})$	3.175	5.922	5.051
F(000)	356	784	856
GooF	0.891	0.879	1.041
Corrección absorción	SADABS	SADABS	SADABS
Reflexiones colectadas	4346	8046	16873
Reflexiones unicas, R _{int}	1310, 0.0752	2362, 0.0642	1570, 0.0509
R1, wR2 [I>2σ(I)]	0.0470, 0.0854	0.0382, 0.0863	0.0347, 0.0868
R1, wR2 (todos los datos)	0.0734, 0.0914	0.0875, 0.1236	0.0518, 0.0929
Final $\Delta o_{\rm c}$ max/min (e Å ⁻³)	0.696/-0.345	0.538/-0.527	0.466/-0.598

Tabla 5.4. Datos cristalográficos correspondientes a las estructuras de los complejos 14-16.

A continuación se analizan las estructuras moleculares de cada uno de los complejos sintetizados en función de parámetros geométricos tales como distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°).

5.2.5.1 Estructura molecular de las dibenzotritiarsocinas 14-16.

En la figura 5.10 se muestra la estructura molecular de los compuestos **14-16**, señalando la numeración empleada. En la tabla 5.5 se presentan los valores de las distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los complejos **14-16**.

La estructura molecular de los compuestos **14** y **16** presenta simetría especular, con grupo espacial $Pmn2_1$ y Pnma respectivamente. Las dos mitades $S(C_6H_4SAs)$ están relacionadas por un plano especular, el cual pasa a través de los átomos S2-As-Hal.

Compuesto	14	15	16	
Hal	Cl	Br	I	
S2→As	2.705(3)	2.698(2)	2.740(1)	
As-S1	2.268(2)	2.291(2)	2.283(1)	
As-S3	-	2.268(3)	-	
As-Hal	2.296(2)	2.482(1)	2.692(1)	
S2-C6	1.789(6)	1.801(8)	1.786(4)	
S2-C7	-	1.794(7)	-	
S2→As-Hal	166.4(1)	168.36(6)	166.96(3)	
S1-As-Hal	87.00(8)	87.30(6)	87.70(3)	
S3-As-Hal	-	88.12(6)	-	
S1-As-S2	84.55(6)	84.84(7)	84.31(3)	
S1-As-S1A	102.8(1)	-	104.30(7)	
S1-As-S3	-	103.22(9)	-	
C6-S2-C6a	102.7(4)	-	103.0(2)	
C6-S2-C7	-	101.8(3)	-	
C1-C6-S2-C6A	-104.3(5)	-	-104.7(3)	
C1-S1-As-S1A	85.8(2)	-	-84.7(1)	
C1-C6-S2-C7	-	100.1(6)	- 1	
C12-C7-S2-C6		-102.9(7)	-	
C1-S1-As-S3	-	-83.9(3)	-	
C12-S3-As-S1	-	83.4(3)	-	

Tabla 5.5. Distancias de enlace (Å), ángulos de enlace (°) y ángulos de torsión (°) más relevantes para los compuestos S(C₄H₄S)₂AsHal **14–16**.

Figura 5.10. Estructura molecular de las dibenzotritiarsocinas **14–16.** (ORTEP al 50% de probabilidad)

El análisis de la estructura molecular de los compuestos **14-16** muestra que las distancias S-As son muy cercanas a la suma de sus radios covalentes $[\Sigma r_{cov}(As,S) = 2.22 \text{ Å}]^{12,13}$ y son semejantes a las reportadas en otros heterociclos que en su estructura presentan enlaces covalentes azufre-arsénico.^{2,5,14-23}

Las distancias As-Hal (Hal = Cl, Br, I) son más largas en un 5-7% que las correspondientes a la suma de sus radios covalentes [$\Sigma r_{cov}(As,Cl) = 2.19 \text{ Å}$; $\Sigma r_{cov}(As,Br) = 2.34 \text{ Å}$; $\Sigma r_{COV}(As,I) = 2.53 \text{ Å}$]^{12,13} y similares con las encontradas en heterociclos que contienen en su estructura molecular enlaces As-Hal.^{1-3,24,25} Los valores de los ángulos de enlace alrededor del átomo de arsénico son significativamente muy diferentes y pueden ser divididos en dos grupos. Los ángulos más grandes son los endocíclicos S-As-S, siendo el más grande el que presenta el compuesto con yodo [102.84(11), 103.22(9) y 104.30(7)° en **14, 15** y **16**, respectivamente]. Por otro lado el grupo de los ángulos más pequeños es el que involucra a los átomos de S-As-Hal [87.00(8), 87.71(6) y 87.70(3)° en **14, 15** y **16**, respectivamente]. Esta diferencia de valores en los dos grupos será abordada más adelante. Así, tomando en consideración los enlaces covalentes [dos con los átomos de azufre(tiolato) y uno con el átomo del halógeno] el átomo de arsénico en los compuestos **14-16** se podría decir que se encuentra tricoordinado dando lugar a una

geometría piramidal.

Un análisis más detallado de la estructura molecular de los compuestos **14-16** muestra en adición a los tres enlaces covalentes para el átomo de arsénico, una distancia que involucra una interacción intramolecular transanular entre el átomo azufre S2 del tipo tioéter y el átomo de arsénico (interacción S \rightarrow As) (Figura 5.10).

Las distancias encontradas para la interacción S \rightarrow As son 2.705(3), 2.698(2) y 2.740(1) Å para los compuestos **14, 15** y **16** respectivamente. Estas distancias son en un 22, 21 y 24% más largas que la suma de los radios covalentes de los átomos de azufre y arsénico [Σr_{cov} (As,S) = 2.22 Å],^{1,13} la magnitud de esas distancias es consistente con la existencia de un enlace secundario.²⁶ Al comparar estas distancias S2-Asl en los compuestos **14, 15** y **16** con otros informados se encuentra que son significativamente más largas que la reportadas para **IIIAsll** que presenta en la celda unitaria dos moléculas cristalográficamente independientes [2.347(10) y 2.391(9) Å]⁴ y son similares a las reportadas para complejos en donde el átomo de arsénico se encuentra tetra- y hexacoordinado; **IIIAs8** [2.719(3) Å],² **IIIAs9** [2.70 Å],¹ **IIIAslO** [2.77 Å],¹ AsCl₃(9)anoS₃ [2.715(3) Å],²⁴ [AsBr₃{MeS(CH₂)₂SMe}] [2.725(3) Å]²⁴ y AsI₃{MeS(CH₂)₂SMe}] [2.697(2) Å]²⁴ pero significativamente más cortas que las reportadas para algunos aductos; AsCl₃(9)anoS₃ [2.776(3) y 2.857(2) Å],²⁴ AsCl₃(14)anoS₄ [2.8709(9) y 2.9655(9) Å],²⁴ AsBr₃{MeS(CH₂)₂SMe} [2.876(3) Å],²⁴ AsI₃{MeS(CH₂)₂SMe} [2.792(2) Å],²⁴ y arsocanos con ligantes bidentados exocíclicos; **IIIAsI2** [3.170(2) y 3.113(2) Å],¹ **IIIAsI3** [3.172(2) Å],¹ **IIIAsH** [2.881(4) Å],⁵ **IIIAsI5** [2.911(1) Å]⁶ y **IIIAsI6** [2.942(11) Å].¹

Retomando el punto concerniente a los ángulos de enlace de la geometría local del átomo de arsénico, se observa que el mayor ángulo S-As-S es bisectado por la línea asociada a la interacción S \rightarrow As, la cual obliga a este ángulo a abrirse y de forma simultánea hace que los otros ángulos se cierren. Por lo anterior y tomando en consideración la interacción intramolecular S \rightarrow As el átomo de arsénico experimenta un aumento en su número de coordinación de tricoordinado a tetracoordinado desplegando una geometría de y/-bipiramide trigonal (ψ -BPT), donde el átomo de azufre(tioéter) y el átomo del halógeno ocupan las posiciones axiales, mientras que las posiciones ecuatoriales son ocupadas por los dos átomos de azufre(tiolato) y el par libre del átomo de As(III) que es estereoquímicamente activo.

Dado que con este análisis estructural se ha establecido que el átomo de arsénico contenido en las dibenzotritiarsocinas aumenta su número de coordinación, es importante estimar su grado de desplazamiento de la geometría local ideal piramidal a y/-bipirámide trigonal (ψ -BPT). Este grado de desplazamiento se calcula por el criterio de la distancia de la interacción D \rightarrow A propuesto por Holmes *et al*²⁷⁻²⁹ y por el criterio mediante el uso de los ángulos propuesto por Draeger *et al*³⁰⁻³². Los resultados obtenidos son mostrados en la tabla 5.6.

Para poder establecer la magnitud de la interacción intramolecular $S \rightarrow As$ se ha empleado el criterio de orden de enlace intramolecular *(oe)* propuesto por Pauling. Los resultados obtenidos son mostrados en la tabla 5.6.

Compuesto	Hal	S→As	S→As-Hal	As-Hal	BPT ^a (%)	$\Delta \theta^{\flat}$ (°)	<i>oe^c</i> As-Hal	$\begin{array}{c} \Delta d^{l} \\ S \rightarrow As \\ (Å) \end{array}$	oe ^c S→As
14	Cl	2.705(3)	166.4(1)	2.296(2)	66.1	15.80	0.708	0.485	0.207
15	Br	2.698(2)	168.36(6)	2.482(1)	66.6	15.51	0.631	0.478	0.212
16	I	2.740(1)	166.96(3)	2.692(1)	63.7	16.60	0.591	0.520	0.185

Tabla 5.6. Comparación de los parámetros geométricos longitud de enlace S2 \rightarrow As-Hal, desplazamiento de BPT, $\Delta\theta$, orden de enlace (*oe*) de los compuestos **14**–**16**.

^{*a*}Si S→As = $\Sigma r_{vdW}(S \rightarrow As)$ la geometria tiene carácter Piramidal, si S→As = $\Sigma r_{cov}(S \rightarrow As)$ la geometria tiene carácter de ψ -BPT.²⁷⁻²⁹ [$\Sigma r_{vdW}(S,As) = 3.65$ Å], [$\Sigma r_{cov}(S,As) = 2.22$ Å].^{12,13} ^{*b*} $\Delta \theta = \theta_{eq} - [(\Sigma \theta_{ax})/2]; \therefore$ si $\Delta \theta = 0^{\circ}$ la geometria es piramidal y si el $\Delta \theta = 30^{\circ}$ la geometría es ψ -BPT.³⁰⁻³² ^{*c*} $oe = 10^{-(1.41 \ Ad)}$.³³ ^{*d*}Incremento de la distancia, $\Delta d = (d_{exp} - \Sigma r_{cov})$,³³ [$\Sigma r_{cov}(S,As) = 2.22$ Å], [$\Sigma r_{cov}(As,Cl) = 2.19$ Å], [$\Sigma r_{cov}(As,Br) = 2.34$ Å], [$\Sigma r_{cov}(As,I) = 2.53$ Å].^{12,13}

El análisis del desplazamiento BPT % muestra que los valores obtenidos son ligeramente más pequeños que los encontrados para sus análogos dibenzotritiaestibocínicos $[S(C_6H_4S)SbHal (73, 74 y 76.5 para IVSb4, IVSb5 y IVSb6 respectivamente].^{17} El valor del ángulo S→As-Hal en los compuestos 14-16 está más cercano a uno lineal con respecto al ángulo que presentan las dibenzotritiaestibocinas <math>[S \rightarrow Sb-Hal 155.24(2), 155.86(4) y 158.61(4)^{\circ}$ para IVSb4, IVSb5 y IVSb6 respectivamente].

Con respecto al *oe*, los valores calculados en las dibenzotritiarsocinas son relativamente más grandes que los observados para los tritiarsocanos $[S(CH_2CH_2S)_2AsHal (0.198, 0.210 y 0.168 para IIIAs8, IIIAs9 y IHAsIO respectivamente)]^{1,2}$ pero más pequeños que los observados en las dibenzotritiaestibocinas $[S(C_6H_4S)_2SbHal (0.274, 0.287 y 0.308 para IVSb4, IVSb5 y IVSb6 respectivamente)].⁸$

La interacción intramolecular S \rightarrow As influye en la conformación que adopta el anillo de ocho miembros en las dibenzotritiarsocinas **14-16.** La conformación encontrada en estos compuestos es descrita como bote-bote con simetría $Cs^{34,35}$ Esta conformación también fue encontrada en **IIIAsll⁴** y en el compuesto **IVSb6** que, por cierto, es el que presenta la distancia S \rightarrow Sb más corta. La descripción de la conformación adoptada por el anillo de ocho miembros está basada en la equivalencia de los ángulos de torsión de los sistemas formados por C-S-As-S y C-S-C-C. En la figura 5.11 se muestra en anillo de ocho miembros con los valores para los ángulos de torsión para los compuestos **14-16.**

Figura 5.11. Ángulos de torsión (°) del anillo de ocho miembros de los compuestos 14-16.

5.2.5.2 Estructura cristalina de los compuestos 14-16.

En la celda unitaria del compuesto **14** - **16** se encontraron distancias intermoleculares entre el átomo de arsénico y los dos átomos de azufre(tiolato). Estas distancias son cercanas a la suma de los radios de van der Waals $[\Sigma r_{vdw} {As,S} = 3.65 \text{ Å}]^{12,13}$ los valores de la interacción intermolecular S•••As son de 3.602(2) Å para el compuesto **14**, 3.595(3) y 3.662(3) Å para **15** y 3.711(2) Å para **16**. El incremento en la longitud de estas distancias es directamente proporcional al incremento en el tamaño del átomo del halógeno. La existencia de estas interacciones da como resultado la formación de cadenas poliméricas infinitas. Lo anterior se muestra en las figuras 5.12-5.14 donde se muestran las celdas unitarias de los compuestos **14**.

Tomando en consideración las interacciones inter- e intramolecular en los compuestos **14-16** el átomo de arsénico se encuentra hexacoordinado con una geometría que puede ser descrita como octaédrica. El átomo de As(III) presenta un par libre de electrones que es estereoquímicamente activo que se encuentra localizado en el ángulo formado por los dos átomos de azufre(tiolato) que forman las interacciones intermoleculares con el átomo de arsénico (S•••As).

Figura 5.12. Celda unitaria del compuesto $S(C_6H_4S)_2AsCl$, 14.

Figura 5.13. Celda unitaria del compuesto S(C₆H₄S)₂AsBr, 15.

Figura 5.14. Celda unitaria del compuesto S(C₆H₄S)₂AsI, 16.

5.3 Conclusiones.

Con base en los resultados obtenidos en esta parte de la tesis se puede considerar que el ligante $S(C_6H_4SH)_2$ puede aumentar el número de coordinacion del átomo de arsénico, a través de la existencia de una interacción intramolecular transanular S \rightarrow As. Lo anterior ha sido apoyado por el análisis estructural en estado sólido, a través de parámetros estructurales utilizados tales como el desplazamiento de BPT(%), $\Delta\theta$, y el orden de enlace (*oe*) (ver tabla5.6).

Los dibenzotritiarsocinas **14-16** muestran que la interacción intramolecular S \rightarrow As es ligeramente más larga que la suma de los radios covalentes de los átomos involucrados en un 21-23 %, mostrando un alto desplazamiento de carácter BPT en el intervalo 66.7 – 63.7 %, con órdenes de enlace ligeramente más grandes que los encontrados es sus análogos arsocanos pero más pequeños que los encontrados en sus análogos dibenzotritiaestibocínicos.

Con base en las distancias de la interacción $S \rightarrow As$ se establece que la fuerza de la interacción disminuye de acuerdo al siguiente orden: Br > Cl > I, con la distancia más corta en el compuesto con bromo (15) con un valor de 2.698(2) Å. Este comportamiento es similar al observado en los arsocanos.¹ La distancia $S \rightarrow As$ encontrada en las dibenzotritiarsocinas es menor a las encontradas en sus análogos arsocanos; esto sugiere que el sistema dibenzotritiarsocina es más flexible que el sistema arsocina.

5.4 Parte Experimental.

Todas las reacciones se llevaron a cabo un una atmósfera de argón libre de oxígeno y humedad mediante el uso técnicas de Schlenk.³⁶ Los disolventes fueron secados y destilados antes de su uso por métodos convencionales. Los puntos de fusión se determinaron en un aparato Melt-Temp II y se reportan sin corregir. Los espectros se obtuvieron de los siguientes instrumentos: espectros de EM-IE; se determinaron en un espectrofotómetro Hewlett Packard MS-598 a 70 eV. El análisis elemental fue realizado en un equipo Perkin Elmer Series II CHNS/O Analyzer. Los espectros de IR se obtuvieron en el intervalo 4000-400 cm⁻¹ en un espectrofotómetro FT-IR Perkin-Elmer System 2000 en pastillas de KBr y en el intervalo 400 - 200 cm⁻¹ en un espectrofotómetro Bruker Tensor 27 como pastillas de Csl. Los espectros de Raman en un espectrofotómetro Perkin Elmer Spectrum GX NIR FT-Raman con una potencia del láser de 10 -280 mW y una resolución de 4 cm⁻¹. Los espectros de RMN de ¹H, ${}^{13}C{}^{1}H$, se obtuvieron en un espectrómetro JEOL Eclipse 400 a una frecuencia de ¹H 399.78 MHz y ¹³C{¹H}; 100.53 MHz. Los desplazamientos químicos (δ) se reportan en ppm, utilizando como referencia TMS. Los espectros fueron obtenidos temperatura ambiente. El ligante S(C₆H₄SH)₂ fue sintetizado de acuerdo al método de síntesis reportado.^{7,8} Las materias primas AsCl₃, KBr, HBr, KI fueron adquiridos comercialmente y se utilizaron como se recibieron.

5.4.1 Preparación de las dibenzotritiarsocinas 14-16.

S(C₆H₄S)₂AsCl (**14**): A una solución de S(C₆H₆SH)₂ (1.76 g, 7.59 mmol) en benceno (25 mL) le fue adicionado AsCI₃ (1.38 g, 7.55 mmol) con una jeringa. La solución amarilla resultante fue agitada durante 30 min, la cual viró a verde y se llevó a reflujo durante 24 h. La solución se llevó a temperatura ambiente y se pasó a través de una columna de Ceuta y Na₂SO₄. La evaporación lenta de benceno produjo a **14** como cristales incoloros, los cuales fueron lavados con hexanos (40 mL) y filtrados por succión. Rendimiento: 2.18 g (80%). P. f; 124-126°C. Espectro de masas (EI-MS) [m/z (reí int)] = 358 (30) [M⁺⁺], 323 (70) [M⁺ - Cl], 248 (10) [S(C₆H₄S)₂⁺⁺], 216 (pico base) [S(C₆H₄S) ⁺⁺]. S(C₆H₄S)₂AsCl (358.76). Análisis elemental para S(C₆H₄S)₂AsCl: Calculado C, 40.17, H 2.25; Encontrado C 40.29, H 2.28. RMN ¹H (CDC1₃): δ = 7.21 (ddd, ³J_H³-_H² = ³J_HV = 7.68 Hz, W = 1.48 Hz, 2 H, H³). 7.29 (ddd, ³J_HV = W = 7.68 Hz, W = 1.48 Hz, 2 H, H³). 7.48 Hz, 2 H, H⁴), 7.56 (dd, J_H¹-_H² = 7.68 Hz, V-_H³=1.48Hz,2H, H¹) ppm. RMN ¹³C{1H} (CDC1₃): δ = 127.7, 130.0, 130.9, 131.7, 134.7, 143.6 ppm. IR (KBr): v = 3049, 1567, 1447, 1417, 1255, 1032, 732 cm⁻¹.

S(C₆H₄S)₂AsBr (**15**): Una suspensión de S(C₆H₄S)₂AsCl (1, 200 mg, 0.56 mmol), KBr (400 mg, 3.32 mmol) y HBr 48% (4 mL) en benceno (25 mL) fue colocada a reflujo durante 24 h. El agua fue removida con la ayuda de una trampa Dean-Stark. La solución amarilla resultante se pasó a través de una columna de Ceuta y Na₂SO₄. Por evaporación lenta de benceno se obtuvo a **15** como cristales incoloros, los cuales fueron lavados con hexanos (40 mL) y filtrados por succión. Rendimiento: 160 mg (71%). P. f; 138 - 140 °C. Espectro de masas (EI-MS) [m/z (reí int)] = 402 (7) [M⁺⁺], 323 (pico base) [M⁺⁺ - Br], 248 (20) [S(C₆H₄S)₂⁺⁺], 215 (30) [S(C₆H₄S) ⁺⁺ - 1]. Análisis elemental para S(C₆H₄S)₂AsBr: Calculado. C 35.74, H 2.00; Encontrado C 36.14, H 2.06. RMN ¹H (CDCI3): δ = 7.21 (ddd, ³J_HV = W = 7.50 Hz, ⁴J_H³-H¹ = 1-44 Hz, 2 H, H³), 7.29 (ddd, V-H¹ = V-H³ = 7.50 Hz, V-H⁴ = 1 -44 Hz, 2 H, H²), 7.53 (dd, ³J_H⁻H² = 7.50 Hz, ⁴J_H⁻H³ = 1 -44 Hz, 2 H, H²), 7.53 (dd, ³J_H⁻H² = 7.50 Hz, ⁴J_H⁻H³ = 1 -44 Hz, 2

H, H[!]), 7.54 (dd, ${}^{3}J_{H}{}^{4}V = 7.50$ Hz, ${}^{4}J_{H}{}^{4}{}_{-H}{}^{2} = 1.44$ Hz, 2 H, H⁴) ppm. RMN ${}^{13}C{}^{1}H$ **CDC1₃**): $\delta = 127.6, 130.0, 130.7, 131.6, 134.9, 142.9$ ppm. IR (KBr): v = 3042, 1551, 1444, 1415, 1252, 1033,741 cm⁻¹.

S(C₆H₄S)₂AsI (**16**): Una suspensión de S(C₆H₄S)₂AsCl (1, 200 mg, 0.56 mmol), KI (550 mg, 3.32 mmol) en benceno (25 mL) fue colocada a reflujo durante 24 h. La solución amarilla resultante se pasó a través de una columna de Celita y Na2SC>4. Por evaporación lenta del benceno produjo a **16** como cristales amarillos opacos, los cuales fueron lavados con hexanos (40 mL) y filtrados por succión. Rendimiento: 250 mg (80%). P. f; 153 - 156 °C. Espectro de masas (EI-MS) [m/z (reí int)] = 323 (pico base) [M⁺⁺ - I], 248 (33) [S(C₆H₄S)₂⁺⁺], 215 (40) [S(C₆H₄S) ⁺⁺ - 1]. Análisis elemental para S(C₆H₄S)₂AsI: Calculado. C 32.01, H 1.79; Encontrado. C 31.29, H 1.86. RMN ¹H (CDCI3): δ = 7.21 (ddd, ³J_HV = W = 7.50 Hz, W = 1.46 Hz, 2 H, H³), 7.28 (ddd, ³J_HV = W = 7.50 Hz, ⁴J_H²-H⁴ = 1.46 Hz, 2 H, H²), 7.48 (dd, V-_H² = 7.50 Hz, W = 1.46 Hz, 2 H, H³), 7.28 (ddd, ³J_HV = W = 7.50 Hz, ⁴J_H²-H⁴ = 1.46 Hz, 2 H, H²), 7.48 (dd, V-_H² = 7.50 Hz, W = 1.46 Hz, 2 H, H¹), 7.52 (dd, ³J_HV = 7.50 Hz, ⁴J_HV = 1.46 Hz, 2 H, H⁴) ppm. RMN ¹³C{1H} (CDCI3): δ = 127.7, 129.9, 130.7, 131.9, 135.3, 141.6 ppm. IR (KBr): v = 3044, 1550, 1445, 1414, 1251, 1032,751 cm⁻¹. Raman: v = 3046, 1570, 1273, 1102, 1035, 380, 329, 284, 206 cm⁻¹.

5.4.2 Cristalografía de rayos X de $S(C_6H_4S)_2AsCI$ (14), $S(C_6H_4S)_2AsBr$ (15) y $S(C_6H_4S)_2AsI$ (16).

Para los compuestos **14-16** se obtuvieron cristales apropiados para el experimento de difracción de rayos X de monocristal por evaporación lenta de una solución de benceno. Los datos de difracción de rayos X de los compuestos **14**—**16** fueron colectados a temperatura ambiente en un difractómetro CCD Smart 6000 usando una radiación de *Mo-Ka (K* = 0.71073 Å, monocromador de grafito). Los datos obtenidos fueron tratados utilizando el paquete de software SMART. Las estructuras fueron resueltas por métodos directos utilizando el programa SHELXTL NT Versión 5.10, utilizando el refinamiento de mínimos cuadrados F . Se aplicó corrección por absorción mediante el uso del programa SADABS.³ Los parámetros de desplazamiento de los átomos no hidrogenoides fueron refinados anisotrópicamente. Las posiciones de los átomos de hidrógeno fueron fijadas con un parámetro isotrópico común.

Bibilografía

' R. Cea Olivares, V. García Montalvo, M. Moya Cabrera, *Coord, Chem. Rev.*, 2005, 249, 859. Y las referencias ahí citadas.

- ² M. Draeger, *Chem. Ber.*, **1974**, *107*, 2601.
- ³ M. Draeger, Z. Anorg. AUg. Chem., 1975. 411, 79.
- ⁴ N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, Angew. Chem., Int. Ed., 1994, 33, 1267.
- ⁵ M. A. Muñoz Hernández, R. Cea Olivares, G. Espinosa Pérez, S. Hernández Ortega, J. Chem. Soc, Dalton Trans. 1996, 413 5.
- ⁶ M. A. Muñoz Hernández, R. Cea Olivares, S. Hernández Ortega, Inorg. Chim. Acta., 1996, 253, 31.
- ⁷ D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem., 1999, 1715.
- ⁸ S. González Montiel, N. Andrade López, G. Merino, A. Vela, J. G. Alvarado Rodríguez, *Eur. J. Inorg. Chem.*, **2003**, 3554.
- ⁹ S. González Montiel, Tesis de Maestría, *Estudio de la interacción intramolecular trans-anular D* \rightarrow *Sb* (*D* = *O*, *S*), UAEH, Pachuca, Hidalgo, México, **2004.**
- ^b A. Zickgraf, E. Braeu, M. Draeger, *Spectrochim. Acta*, **1998**, *54A*, 85.
- ¹ G. Sócrates, *Infrared and Raman Characteristic Group frequencies*, Tables and Charts, Tercera Edición, John Wiley and Sons, NuevaYork, USA, **2001**, p 304.
- ² W. W. Porterfield, *Inorganic Chemistry: A Unified Approach*, Segunda Edición, Academic Press, Inc. USA **1993**, p. 214.
- ^B A. Bondi, J. Phys. Chem., **1964**, 68, 441.
- [#] M. Draeger, Z Anorg. Allg. Chem. **1975, 411,** 79.
- ⁵ M. Draeger, *Chem. Ber.*, **1974,** *107*, 2601.
- ⁶ R. Cea Olivares, M. R. Estrada, G. Espinosa Pérez, I. Haiduc, P. García y García, M. López Cardoso, M. López Vaca, A. M. Cotero Villegas, *Main Group Chem.*, **1995**, 159.
- ⁷ N. Burford, T. M. Parks, Bruce W. Royan, B. Borecka, T. Stanley Cameron, J. F. Richardson, E. J. Gabe, R. Hynes, *J. Am. Chem. Soc*, **1992**,*114*, 8147.
- ⁸ A. W. Cordes, P. D. Gwinup, M. C. Malmstrom, *Inorg. Chem.*, **1972**, //, 836.
- ⁹ A. J. Di Maio, A. L. Rheingold, *Inorg. Chem.*, **1990**, *29*, 798.
- ^D R. Cea Olivares, R. A. Toscano, M. López, P. García y García, *Heteroat. Chem.*, **1993**, *4*, 313.
- ² O. M. Kekia, A. L. Rheingold, Organometallics, **1998**, 17, 726.
- ²² A. T. Mohammed, V. Krug, U. Muller, Z. Anorg. Allg. Chem., **1988**, 557, 91.
- ²³ J. M. Kisenyi, G. R. Willey, M. G. B. Drew, S. O. Wandiga, J. Chem. Soc, Dalton Trans., 1985, 69.
- ^M N. J. Hill, W. Levason, G. Reid, *Inorg. Chem.*, **2002**, *41*, 2070.
- ³⁵ A. J. Barton, N. J. Hill, W. Levason, G. Reid, J. Am. Chem. Soc, 2001, 123, 11801.
- ²⁶ N. W. Alcock, Adv. Inorg. Chem. Radiochem., **1972**, 15, 1.
- ²⁷ A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1999**, *38*, 3369.
- ²⁸ N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1998**, *37*, 3862.
- ²⁹ D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.*, **1997**, *36*, 5082.
- ³⁰ U. Kolb, M. Draeger, B. Jousseaume, Organometallics, **1991**, 10, 2737.
- ³ U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics, 1994, 13, 4413.
- ²² U. Kolb, M. Beuter, M. Draeger, *Inorg. Chem.*, **1994**, *33*, 4522.
- ³³ L. Pauling, *The Nature of the Chemical Bond*, Tercera Edición, Cornell University, Ithaca, 1960, Cap. 7.
- ³⁴ T. Thompson, S. D. Pastor, G. Rihs, *Inorg. Chem.*, **1999**, *38*, 4163.
- ³⁵ S. D. Pastor, V. Huang, D. NabiRahni, S. A. Koch, H. F. Hsu, *Inorg. Chem.*, **1997**, *36*, 5966.
- ³⁶ W. L. F. Armarego, D. D. Perrin, *Purification of Laboratory Chemicals*, Butterworth Heinemann, Cuarta Edición, Gran Bretaña, **1999.**
- ³⁷ SHEXTL 5.10 Bruker AXS, Inc. Madison. WI. USA, **1998.**

⁸ SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc. Madison, WI, **1996.**
Capítulo 6 Conclusiones Generales

Conclusiones Generales.

Al final de los capítulos 2 (átomo aceptor = Ge), 3 (átomo aceptor = Sn), 4 (átomo aceptor = Pb) y 5 (átomo aceptor = As) se han presentado las conclusiones que se alcanzaron por haber estudiado a los derivados por átomo central aceptor A de forma sistemática. En este apartado se recogerán algunas de las conclusiones obtenidas en los capítulos anteriores y se enmarcarán dentro del objetivo general del presente trabajo de tesis.

Las conclusiones generales son las siguientes:

En lo que respecta a la química preparativa, el método de intercambio de halógenos (Cl por Br o I) unidos a Ge, Sn, As e incluso Sb ha probado ser bastante exitoso ya que se puede partir de derivados clorados baratos (o al menos no tan caros) para obtener las dibenzometalocinas cloradas (1, 6 y 14) y, a partir de éstas, obtener los derivados bromados y yodados (2, 7, 8, 15 y 16).

- En lo que respecta a los estudios estructurales de las dibenzometalocinas se ha encontrado que en los casos donde A = Ge(IV), Sn(IV) o Pb(IV), el átomo aceptor presenta un aumento en su número coordinación de cuatro a cinco con un desplazamiento de geometría tetraédrica a geometría BPT y cuando A = As(III), el átomo de arsénico(III) presenta un aumento en su número de coordinación de tres a cuatro con un desplazamiento de geometría piramidal a geometría ψ-BPT.
- Se ha encontrado que los derivados mono- y dihalogenados son los que presentan la mayor interacción D→A, con órdenes de enlace relativamente mayores tanto estructurales (tipo Pauling) como electrónicos (índice de Wiberg), siendo los derivados de estaño lo que presentan los valores mayores. Con base en los resultados encontrados, no se pudo establecer una relación general que involucrara, por ejemplo, cómo varía la distancia D→A con respecto a electronegatividad o la serie *trans*.
- En general la introducción de grupos orgánicos unidos al átomo aceptor central reducen la acidez del átomo central, ocasionando un aumento en la distancia $D \rightarrow A$ e influyendo en la conformación que adopta el anillo central de ocho miembros, estando en estos casos más distorsionada (conformación bote torcido C_l).
- Con base en las propiedades ácido-base, se esperaría que la mayor interacción S->A tuviera lugar cuando A fuese igual a plomo, dado que este es el ácido más blando. Los resultados del análisis de la comparación estructural en función de los órdenes de enlace de los derivados difenilados S(C₆H₄S)₂APri2 (A = Ge, 3; A = Sn, 9 y A = Pb, 12) indican que la fuerza de la interacción S→A disminuye de acuerdo a la siguiente tendencia: S→Sn→ S→Pb→ S→Ge. Esta aparente anomalía podría ser explicada si se consideran las interacciones intermoleculares presentes en el derivado de plomo, a consecuencia de su gran tamaño atómico.
- Por último, a manera de presentación gráfica se muestra la relación entre el desplazamiento de BPT y el *oe* en las dibenzometalocinas del grupo 14 [Ge(IV), Sn(IV), Pb(IV)] (figura 6.1) así como la relación entre el desplazamiento de geometría ψ-BPT y el *oe* en las dibenzometalocinas del grupo 15 [As(III), Sb(III)] (figura 6.2). En estas gráficas se muestra la posición que ocupan las diversas dibenzometalocinas en función tanto del átomo aceptor como de los gigantes exocíclicos.

En el primer gráfico se observa una curva asintótica con tendencia exponencial, en donde los datos más dispersos son debidos a los derivados difenilados, mientras que el segundo gráfico se observa una curva con tendencia lineal.

Figura 6.1. Gráfica de desplazamiento de BPT vs oe de las dibenzometalocinas del grupo 14.

Figura 6.2. Gráfica de desplazamiento de ψ -BPT vs oe de las dibenzometalocinas del grupo 15.

Anexos

	х	У	Z	U(eq)
Ge1	4313(1)	8984(1)	8356(1)	34(1)
Cl1	4205(1)	11091(1)	8646(1)	53(1)
S1	3374(1)	9117(1)	7151(1)	49(1)
S2	2855(1)	8418(1)	9106(1)	45(1)
S3	3917(1)	6330(1)	7946(1)	38(1)
C1	2048(3)	7915(3)	7078(2)	40(1)
C2	749(4)	8194(4)	6643(2)	54(1)
C3	-287(4)	7285(5)	6554(2)	67(1)
C4	-83(4)	6085(4)	6901(2)	62(1)
C5	1184(4)	5781(4)	7331(2)	51(1)
C6	2251(3)	6701(3)	7416(2)	38(1)
C7	3479(3)	5810(3)	8804(2)	39(1)
C8	3619(4)	4514(4)	8999(2)	48(1)
C9	3324(4)	4094(4)	9668(2)	57(1)
C10	2891(5)	4973(4)	10144(2)	63(1)
C11	2790(4)	6286(4)	9974(2)	53(1)
C12	3083(3)	6728(3)	9294(2)	38(1)
C13	6279(3)	8628(3)	8662(2)	35(1)
C14	7032(4)	7848(3)	8257(2)	46(1)
C15	8421(4)	7609(4)	8527(3)	62(1)
C16	9051(4)	8152(5)	9196(3)	69(1)
C17	8321(4)	8938(4)	9595(2)	63(1)
C18	6938(4)	9175(4)	9334(2)	49(1)

A1 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂GePhCl, **1**.

	x	У	Z	U(eq)
Gel	2999(1)	1205(1)	2675(1)	43(1)
Brl	3173(1)	-1304(1)	2724(1)	72(1)
S1	1128(2)	1780(2)	4384(1)	68(1)
S2	1908(2)	2033(2)	1152(1)	55(1)
S3	2555(2)	4179(2)	2642(1)	47(1)
C1	-209(7)	3646(6)	4080(5)	48(1)
C2	-1900(8)	4085(7)	4655(5)	63(2)
C3	-3028(8)	5522(8)	4476(6)	65(2)
C4	-2446(8)	6535(7)	3721(6)	63(2)
C5	-771(7)	6128(6)	3161(5)	54(2)
C6	374(7)	4677(6)	3331(5)	46(1)
C7	2538(6)	4616(6)	1146(5)	45(1)
C8	2815(7)	5883(6)	587(5)	57(2)
C9	2854(8)	6207(7)	-581(6)	67(2)
C10	2613(9)	5284(8)	-1169(6)	72(2)
C11	2366(8)	4020(7)	-636(5)	62(2)
C12	2324(6)	3668(6)	544(5)	46(1)
C13	5370(7)	789(6)	2493(5)	47(1)
C14	5919(9)	1148(7)	3310(6)	66(2)
C15	7700(11)	737(9)	3104(8)	91(3)
C16	8778(9)	52(8)	2148(9)	88(3)
C17	8233(8)	-281(7)	1349(8)	78(2)
C18	6538(7)	79(6)	1529(6)	59(2)

A2 Coordenadas atómicas (× 10⁴) y parámetros de desplazamiento equivalentes isotrópicos $(\text{\AA} \times 10^3)$ para S(C₆H₄S)₂GePhBr, **2**.

	х	У	Z	U(eq)
Gel	3035(1)	7998(1)	482(1)	49(1)
S1	3348(1)	7574(1)	2030(1)	54(1)
S2	3425(1)	9502(1)	333(1)	61(1)
\$3	5948(1)	8479(1)	1249(1)	55(1)
C1	4865(3)	7088(3)	2248(2)	47(1)
C2	4954(4)	6284(3)	2775(3)	59(1)
C3	6093(4)	5873(3)	3040(3)	72(1)
C4	7152(4)	6266(3)	2782(3)	73(1)
C5	7092(3)	7070(3)	2260(3)	61(1)
C6	5951(3)	7490(2)	1992(2)	47(1)
C7	5240(3)	9319(2)	1922(3)	50(1)
C8	5772(4)	9562(3)	2838(3)	62(1)
C9	5257(5)	10234(3)	3348(3)	82(1)
C10	4216(5)	10686(3)	2936(4)	90(2)
C11	3682(4)	10460(3)	2023(3)	72(1)
C12	4171(3)	9771(2)	1508(3)	52(1)
C13	3924(3)	7226(3)	-340(3)	53(1)
C14	4703(3)	7586(3)	-960(3)	65(1)
C15	5302(4)	7021(4)	-1553(3)	86(1)
C16	5124(5)	6095(4)	-1543(4)	90(2)
C17	4361(4)	5720(3)	-938(4)	84(1)
C18	3769(4)	6280(3)	-329(3)	68(1)
C19	1220(3)	7884(3)	232(2)	48(1)
C20	676(3)	7140(3)	-262(3)	56(1)
C21	-620(3)	7054(3)	-411(3)	64(1)
C22	-1354(3)	7696(3)	-70(3)	70(1)
C23	-824(4)	8435(4)	417(4)	90(2)
C24	454(3)	8530(3)	568(3)	76(1)

A3 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂GePh₂, **3**.

	х	У	Z	U(eq)
Gel	869(1)	7390(1)	5109(1)	53(1)
Cll	-703(1)	7723(1)	5947(1)	84(1)
S1	1614(1)	5653(1)	5777(1)	72(1)
S2	2205(1)	8930(1)	5619(1)	67(1)
01	3145(3)	6948(2)	4495(2)	52(1)
C1	3388(4)	5793(3)	5955(3)	52(1)
C2	4211(5)	5214(3)	6753(3)	60(1)
C3	5615(5)	5291(4)	6897(3)	70(1)
C4	6201(5)	5940(4)	6270(3)	67(1)
C5	5413(4)	6517(3)	5474(3)	57(1)
C6	4021(4)	6434(3)	5320(3)	46(1)
C7	3515(4)	8071(3)	4199(3)	48(1)
C8	4203(4)	8172(4)	3457(3)	61(1)
C9	4519(4)	9280(4)	3138(3)	67(1)
C10	4116(4)	10277(4)	3577(3)	62(1)
C11	3401(4)	10167(3)	4312(3)	58(1)
C12	3083(4)	9064(3)	4640(3)	48(1)
C13	26(5)	7335(4)	3710(3)	78(1)
C14	-1478(5)	7593(4)	3460(4)	91(2)

A4 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para O(C₆H₄S)₂GeEtCl, 4.

	х	У	Z	U(eq)
Gel	6247(1)	6751(1)	8242(1)	49(1)
S1	6096(1)	8788(1)	7162(1)	57(1)
S2	4035(1)	6381(2)	8953(1)	71(1)
O1	4600(3)	6459(3)	6478(2)	51(1)
C1	6080(4)	8231(4)	5843(3)	46(1)
C2	6820(5)	8916(5)	4977(4)	58(1)
C3	6799(5)	8588(6)	3938(4)	67(1)
C4	6052(6)	7530(6)	3725(4)	73(1)
C5	5294(5)	6822(5)	4558(4)	62(1)
C6	5309(4)	7193(4)	5605(3)	48(1)
C7	3176(4)	7121(4)	6835(4)	48(1)
C8	2146(5)	7672(5)	6121(4)	59(1)
C9	757(5)	8275(6)	6493(5)	78(2)
C10	360(5)	8316(5)	7583(6)	82(2)
C11	1374(5)	7741(5)	8329(4)	74(1)
C12	2815(4)	7127(5)	7953(4)	56(1)
C13	7391(4)	5034(4)	7555(3)	50(1)
C14	8635(5)	5143(5)	6858(4)	69(1)
C15	9469(6)	3913(6)	6395(4)	81(2)
C16	9087(6)	2606(6)	6610(5)	83(2)
C17	7860(7)	2468(5)	7282(5)	88(2)
C18	7000(5)	3693(5)	7762(4)	69(1)
C19	7128(4)	7297(5)	9451(3)	52(1)
C20	8116(5)	6324(5)	10029(4)	67(1)
C21	8775(5)	6779(8)	10855(4)	86(2)
C22	8474(6)	8190(8)	11122(5)	93(2)
C23	7475(7)	9174(7)	10570(5)	96(2)
C24	6812(6)	8733(6)	9750(4)	77(2)

A5 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para O(C₆H₄S)₂GePh₂, **5**.

	х	У	z	U(eq)
Sn1	647(1)	8906(1)	1678(1)	37(1)
C11	799(2)	11142(1)	1359(1)	64(1)
S1	1741(1)	9034(1)	2961(1)	56(1)
S2	2189(1)	8299(1)	870(1)	50(1)
S3	1121(1)	6284(1)	2080(1)	37(1)
C1	3000(4)	7817(4)	2975(2)	45(1)
C2	4295(5)	8043(5)	3390(3)	60(1)
C3	5312(5)	7127(6)	3435(3)	75(2)
C4	5055(5)	5976(6)	3078(3)	72(2)
C5	3795(5)	5714(5)	2658(2)	52(1)
C6	2764(4)	6634(4)	2608(2)	39(1)
C7	1525(4)	5755(4)	1224(2)	38(1)
C8	1348(5)	4454(4)	1045(2)	49(1)
C9	1631(5)	3997(4)	380(3)	60(1)
C10	2063(6)	4828(5)	-102(3)	66(1)
C11	2205(5)	6138(5)	51(3)	56(1)
C12	1941(4)	6620(4)	719(2)	39(1)
C13	-1463(4)	8563(4)	1328(2)	40(1)
C14	-2203(5)	7736(4)	1681(3)	52(1)
C15	-3561(5)	7527(5)	1392(3)	69(2)
C16	-4161(5)	8126(7)	745(4)	79(2)
C17	-3432(6)	8961(6)	400(3)	79(2)
C18	-2095(5)	9197(5)	683(3)	56(1)

A6 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂SnPhCl, 6.

	х	У	Z	U(eq)
Snl	9406(1)	3901(1)	3356(1)	39(1)
Brl	9323(1)	6232(1)	3704(1)	65(1)
S1	8290(2)	4044(2)	2073(1)	58(1)
S2	7848(2)	3332(2)	4162(1)	51(1)
S3	8897(2)	1330(2)	2953(1)	40(1)
C1	7031(8)	2844(7)	2049(4)	50(2)
C2	5745(9)	3084(8)	1627(4)	66(2)
C3	4753(9)	2178(11)	1572(5)	80(3)
C4	4986(9)	1021(9)	1912(5)	77(3)
C5	6230(8)	778(8)	2333(4)	61(2)
C6	7260(7)	1673(6)	2410(4)	45(2)
C7	8465(7)	819(6)	3807(4)	43(2)
C8	8606(8)	-451(6)	3980(4)	52(2)
C9	8302(8)	-892(7)	4644(5)	61(2)
C10	7884(9)	-71(7)	5131(5)	65(2)
C11	7781(8)	1207(7)	4974(4)	56(2)
C12	8060(7)	1685(6)	4307(4)	39(2)
C13	11516(7)	3517(6)	3686(4)	42(2)
C14	12229(8)	2709(7)	3319(5)	58(2)
C15	13596(10)	2463(9)	3595(6)	83(3)
C16	14224(10)	3028(11)	4241(7)	93(4)
C17	13538(9)	3849(10)	4602(6)	83(3)
C18	12185(8)	4110(7)	4338(4)	60(2)

A7 Coordenadas atómicas (× 10⁴) y parámetros de desplazamiento equivalentes isotrópicos (Å×10³) para $S(C_6H_4S)_2SnPhBr$, 7.

	х	У	Z	U(eq)
Sn1	4441(1)	3866(1)	8395(1)	40(1)
I1	4428(1)	6314(1)	8774(1)	68(1)
S1	3341(2)	4011(1)	7116(1)	59(1)
S2	2852(1)	3334(1)	9181(1)	51(1)
S3	3907(1)	1359(1)	7992(1)	44(1)
C1	2092(5)	2849(5)	7081(3)	52(1)
C2	811(6)	3087(6)	6637(3)	72(2)
C3	-189(7)	2196(8)	6562(4)	95(2)
C4	30(7)	1070(7)	6898(4)	89(2)
C5	1267(6)	817(6)	7340(3)	69(2)
C6	2303(5)	1717(5)	7429(3)	50(1)
C7	3442(5)	875(4)	8839(2)	43(1)
C8	3556(6)	-368(4)	9017(3)	60(1)
C9	3242(7)	-774(5)	9667(3)	74(2)
C10	2828(7)	42(5)	10150(3)	68(2)
C11	2753(5)	1279(5)	9996(3)	55(1)
C12	3051(5)	1726(4)	9332(3)	42(1)
C13	6548(5)	3443(4)	8708(3)	46(1)
C14	7192(6)	2628(5)	8320(3)	67(2)
C15	8553(7)	2373(7)	8568(5)	99(3)
C16	9240(7)	2925(9)	9204(6)	114(3)
C17	8608(8)	3739(8)	9580(5)	97(2)
C18	7254(6)	4008(5)	9337(3)	66(2)

A8 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂SnPhI, 8.

	х	У	z	U(eq)
Sn1	676(1)	2372(1)	7926(1)	44(1)
S1	1562(1)	710(1)	9602(1)	55(1)
S2	2398(1)	4111(1)	6731(1)	54(1)
S3	3228(1)	910(1)	6847(1)	49(1)
C1	3319(3)	1233(3)	9155(3)	41(1)
C2	3977(3)	1529(3)	10046(3)	51(1)
C3	5339(4)	1917(4)	9737(4)	61(1)
C4	6063(4)	2011(4)	8544(4)	62(1)
C5	5437(3)	1716(3)	7664(3)	51(1)
C6	4059(3)	1328(3)	7959(3)	40(1)
C7	3702(3)	2297(3)	5472(3)	46(1)
C8	4437(4)	2041(4)	4393(3)	56(1)
C9	4762(4)	3055(5)	3294(4)	69(1)
C10	4379(4)	4360(4)	3245(4)	68(1)
C11	3639(4)	4632(4)	4303(4)	57(1)
C12	3277(3)	3615(3)	5423(3)	45(1)
C13	-313(3)	1680(3)	6678(3)	45(1)
C14	-748(4)	348(4)	6918(4)	60(1)
C15	-1479(4)	-16(5)	6124(4)	73(1)
C16	-1779(4)	940(5)	5099(5)	79(1)
C17	-1357(5)	2250(5)	4832(4)	86(2)
C18	-628(4)	2621(4)	5634(4)	71(1)
C19	-664(3)	3552(3)	8892(3)	47(1)
C20	-1003(4)	3174(4)	10204(4)	60(1)
C21	-1861(4)	3953(5)	10817(4)	73(1)
C22	-2385(4)	5102(5)	10144(5)	77(1)
C23	-2058(5)	5492(5)	8845(5)	82(1)
C24	-1196(4)	4719(4)	8212(4)	68(1)

A9 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂SnPh₂, 9.

	x	У	z	U(eq)
Sn1	6551(1)	7679(1)	5501(1)	48(1)
Sn2	7909(1)	2797(1)	-737(1)	45(1)
CII	4781(3)	8129(4)	6703(2)	87(1)
C12	7520(4)	5869(3)	6249(2)	80(1)
C13	6381(3)	3550(3)	-2122(2)	80(1)
C14	8439(3)	914(2)	-1311(2)	71(1)
S1	7523(3)	9162(2)	5986(2)	56(1)
S2	5355(3)	7755(3)	3839(2)	71(1)
S3	8508(2)	7256(2)	4011(2)	49(1)
S4	6468(3)	3035(3)	788(2)	67(1)
S5	9346(2)	3943(2)	-1257(2)	55(1)
S6	9623(2)	2098(2)	935(2)	44(1)
C1	9157(9)	8659(8)	5542(7)	45(2)
C2	10083(10)	9075(9)	6099(8)	52(2)
C3	11358(11)	8763(11)	5812(9)	67(3)
C4	11728(11)	8077(12)	4953(10)	74(3)
C5	10881(10)	7630(10)	4403(9)	61(3)
C6	9554(10)	7939(9)	4678(7)	51(2)
C7	7587(10)	8285(8)	3054(7)	50(2)
C8	8299(12)	8854(10)	2343(8)	64(3)
C9	7589(19)	9567(12)	1526(10)	95(5)
C10	6280(20)	9703(14)	1406(12)	112(6)
C11	5581(13)	9187(13)	2122(10)	81(4)
C12	6282(13)	8421(11)	2958(9)	69(3)
C13	7428(9)	3476(8)	1772(7)	48(2)
C14	6742(11)	4233(9)	2571(9)	61(3)
C15	7444(13)	4591(10)	3363(9)	68(3)
C16	8780(12)	4262(9)	3399(8)	61(3)
C17	9400(11)	3577(9)	2628(7)	54(3)
C18	8769(9)	3161(7)	1830(7)	42(2)
C19	10914(9)	2640(8)	449(7)	46(2)
C20	12092(10)	2295(11)	975(8)	62(3)
C21	13135(11)	2676(13)	613(10)	78(4)
C22	13025(11)	3382(11)	-294(10)	71(3)
C23	11842(10)	3732(8)	-840(8)	52(2)
C24	10774(9)	3389(8)	-488(7)	46(2)

A10 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂SnCl₂, **10**.

	x	у	z	U(eq)
Snl	4356(1)	4868(1)	8162(1)	37(1)
Sn2	2499(1)	10275(1)	2877(1)	45(1)
S1	6704(1)	4531(1)	8416(1)	54(1)
S2	4703(1)	5522(1)	6603(1)	43(1)
S3	5440(1)	3377(1)	7561(1)	48(1)
S4	2046(1)	4367(1)	8221(1)	49(1)
S5	3532(1)	3764(1)	9606(1)	50(1)
S6	4340(2)	10587(1)	1627(1)	75(1)
S7	445(1)	10766(1)	2244(1)	53(1)
S8	2467(1)	8961(1)	2050(1)	51(1)
S9	4130(1)	9199(1)	3808(1)	59(1)
S10	1189(1)	9159(1)	4150(1)	54(1)
N1	985(4)	3490(3)	9803(3)	46(1)
N2	2713(4)	8348(3)	5299(3)	51(1)
C1	7559(5)	4282(4)	7483(4)	53(1)
C2	8842(6)	4590(5)	7110(4)	71(2)
C3	9552(7)	4396(6)	6382(5)	93(3)
C4	9018(7)	3915(6)	6008(5)	80(2)
C5	7761(6)	3621(4)	6361(4)	66(2)
C6	7050(5)	3807(3)	7090(3)	50(1)
C7	4649(5)	3723(4)	6684(3)	46(1)
C8	4296(6)	3070(4)	6406(4)	58(1)
C9	3590(6)	3313(5)	5768(4)	65(2)
C10	3233(6)	4204(4)	5393(4)	58(1)
C11	3561(5)	4871(4)	5660(3)	49(1)
C12	4268(5)	4642(3)	6318(3)	42(1)
C13	3752(5)	6122(3)	8458(3)	41(1)
C14	4278(6)	6339(4)	9023(4)	63(2)
C15	3949(8)	7162(4)	9168(5)	77(2)
C16	3067(6)	7795(4)	8755(4)	62(2)
C17	2498(6)	7583(4)	8196(4)	59(2)
C18	2851(5)	6753(4)	8042(3)	51(1)
C19	2045(4)	3834(3)	9278(3)	42(1)
C20	1007(6)	3025(4)	10705(3)	61(2)
C21	708(8)	3662(6)	11224(4)	87(2)
C22	-297(5)	3526(4)	9561(4)	56(1)
C23	-424(8)	2679(6)	9350(5)	88(2)
C24	3564(6)	10458(4)	877(4)	61(2)
C25	3757(8)	11071(5)	52(4)	82(2)
C26	3170(10)	10997(6)	-557(4)	94(3)
C27	2340(10)	10313(6)	-364(4)	95(3)
C28	2125(8)	9710(5)	417(4)	72(2)
C29	2737(5)	9774(4)	1033(4)	55(1)
C30	698(5)	8951(3)	2278(3)	46(1)
C31	163(6)	8156(4)	2404(4)	58(1)
C32	-1222(7)	8118(4)	2611(4)	69(2)

A11 Coordenadas atómicas (× 10⁴) y parámetros de desplazamiento equivalentes isotrópicos $(\text{\AA}\times10^3)$ para $S(C_6H_4S)_2SnPh(S_2CNEt_2)$, 11.

C33	-2042(6)	8863(5)	2694(5)	70(2)
C34	-1531(6)	9661(4)	2585(4)	62(2)
C35	-140(5)	9728(3)	2376(3)	45(1)
C36	2481(5)	11397(3)	3349(4)	50(1)
C37	2073(5)	11305(4)	4209(4)	54(1)
C38	2094(7)	12037(5)	4491(4)	69(2)
C39	2505(7)	12844(4)	3928(5)	73(2)
C40	2904(7)	12918(4)	3087(5)	70(2)
C41	2879(6)	12210(4)	2801(4)	63(2)
C42	2677(5)	8841(3)	4520(4)	49(1)
C43	3954(6)	8142(5)	5638(4)	68(2)
C44	4149(7)	8852(5)	5995(5)	75(2)
C45	1475(6)	8047(4)	5911(4)	61(1)
C46	1215(8)	7107(5)	5981(5)	82(2)

	x	У	Z	U(eq)
Pb1	4426(1)	2663(1)	7019(1)	51(1)
S1	2534(3)	932(3)	8254(3)	55(1)
S2	3417(3)	4383(4)	5341(3)	60(1)
S3	1747(3)	4149(3)	8122(3)	52(1)
C1	1702(11)	1444(12)	9570(10)	46(3)
C2	1389(13)	434(13)	10695(12)	61(3)
C3	681(14)	686(15)	11746(12)	66(4)
C4	301(13)	1986(16)	11690(13)	71(4)
C5	617(12)	3015(14)	10569(12)	58(3)
C6	1297(12)	2751(12)	9520(11)	50(3)
C7	920(11)	3683(10)	7069(10)	44(3)
C8	-436(11)	3230(12)	7382(12)	55(3)
C9	-1097(12)	2929(13)	6539(14)	63(4)
C10	-362(13)	3035(12)	5328(14)	63(4)
C11	1000(12)	3492(12)	4981(12)	55(3)
C12	1661(11)	3794(11)	5845(11)	49(3)
C13	5360(11)	3311(12)	8371(11)	49(3)
C14	5822(13)	4629(14)	8169(12)	64(4)
C15	6526(14)	4935(18)	8992(15)	82(5)
C16	6743(16)	3970(20)	10017(16)	85(5)
C17	6295(17)	2667(16)	10224(13)	83(5)
C18	5624(15)	2340(14)	9429(13)	73(4)
C19	5740(10)	1428(12)	6022(12)	51(3)
C20	6072(14)	1840(15)	4675(13)	70(4)
C21	6894(15)	1067(17)	4076(15)	81(4)
C22	7398(15)	-103(17)	4749(16)	81(5)
C23	7068(16)	-534(16)	6071(17)	86(5)
C24	6233(14)	250(14)	6723(13)	68(4)

A12 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂PbPh₂, **12**.

	х	У	z	U(eq)
Pb1	2335(1)	1826(1)	3945(1)	57(1)
O1	1485(3)	1106(3)	1173(3)	59(1)
S1	4315(2)	1428(2)	2663(1)	67(1)
S2	505(2)	3198(2)	2988(1)	71(1)
C1	3692(5)	126(5)	1470(5)	54(1)
C2	4527(6)	-909(5)	1119(5)	64(1)
C3	4130(7)	-1885(6)	153(6)	74(2)
C4	2847(7)	-1850(6)	-499(6)	74(2)
C5	1970(6)	-848(6)	-173(5)	67(2)
C6	2400(5)	130(5)	802(5)	54(1)
C7	1660(5)	2339(5)	836(5)	56(1)
C8	2194(6)	2503(6)	-236(6)	71(2)
C9	2316(7)	3742(8)	-527(7)	87(2)
C10	1882(7)	4814(8)	240(8)	92(2)
C11	1346(6)	4649(6)	1304(6)	76(2)
C12	1223(5)	3409(5)	1629(5)	60(1)
C13	1538(5)	-148(5)	4062(5)	57(1)
C14	450(7)	-713(6)	3278(6)	84(2)
C15	29(9)	-1996(7)	3375(7)	102(2)
C16	709(10)	-2650(7)	4215(8)	99(2)
C17	1794(9)	-2074(8)	4995(9)	111(3)
C18	2208(7)	-819(7)	4920(7)	91(2)
C19	3452(5)	3147(5)	5530(5)	57(1)
C20	3076(7)	4422(6)	5807(6)	82(2)
C21	3868(8)	5285(6)	6710(7)	92(2)
C22	4997(7)	4884(6)	7321(6)	84(2)
C23	5384(7)	3614(7)	7075(6)	88(2)
C24	4611(6)	2730(6)	6155(6)	75(2)

A13 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para O(C₆H₄S)₂PbPh₂, **13**.

	x	У	z	U(eq)
As1	0	-255(1)	10783(2)	49(1)
C11	0	-2946(2)	10907(9)	74(1)
S1	1025(1)	-435(2)	7684(4)	57(1)
S2	0	2807(3)	9241(6)	40(1)
C1	1235(3)	1443(7)	6307(16)	42(2)
C2	1890(4)	1556(9)	4474(18)	59(2)
C3	2091(4)	2951(10)	3204(18)	67(2)
C4	1673(4)	4279(9)	3682(18)	60(2)
C5	1036(4)	4229(7)	5533(19)	48(2)
C6	807(3)	2811(7)	6778(12)	38(2)

A14 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂AsCl, **14**.

	х	У	z	U(eq)
Asl	4474(2)	6956(1)	4930(1)	52(1)
Brl	4272(2)	6469(1)	3572(1)	75(1)
S1	7577(5)	7909(1)	4523(1)	60(1)
S2	5877(4)	7492(1)	6370(1)	45(1)
S3	7539(6)	5953(1)	5240(1)	63(1)
C1	9010(17)	8413(5)	5350(4)	45(2)
C2	10988(19)	9016(5)	5210(5)	59(2)
C3	12200(20)	9451(5)	5800(6)	66(2)
C4	11480(20)	9312(5)	6557(6)	68(3)
C5	9519(18)	8723(5)	6723(4)	51(2)
C6	8333(16)	8267(4)	6125(4)	43(2)
C7	8383(16)	6740(4)	6683(4)	42(2)
C8	9720(18)	6793(5)	7420(4)	55(2)
C9	11700(20)	6228(5)	7672(5)	65(3)
C10	12250(20)	5600(6)	7206(5)	67(3)
C11	10935(18)	5537(5)	6475(5)	56(2)
C12	8995(17)	6112(4)	6206(4)	45(2)

A15 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂AsBr, **15**.

	х	У	z	U(eq)
Asl	4889(1)	7500	12512(1)	60(1)
11	6300(1)	7500	12766(1)	89(1)
S1	4969(1)	6364(1)	9507(3)	71(1)
S2	3505(1)	7500	10927(3)	46(1)
CI	4121(2)	6143(2)	8106(8)	52(1)
C2	4076(2)	5430(3)	6311(10)	67(1)
C3	3467(3)	5235(3)	4891(10)	69(1)
C4	2874(2)	5720(2)	5252(9)	62(1)
C5	2895(2)	6401(2)	7107(8)	53(1)
C6	3514(2)	6618(2)	8528(8)	45(1)

A16 Coordenadas atómicas (× 10^4) y parámetros de desplazamiento equivalentes isotrópicos (Å× 10^3) para S(C₆H₄S)₂AsI, **16**.

DOI: 10.1002/ejic.200600424

Pentacoordination at Germanium by Transannular Bonding of Sulfur or Oxygen in an Eight-Membered Ring: An Experimental and Theoretical Study

Simplicio González-Montiel,^[a] Noemí Andrade-López,^[a] Verónica García-Montalvo,^[b] Juan Antonio Cogordan,^[b] and José G. Alvarado-Rodríguez*^[a]

Keywords: Germanium / Hypercoordinate compounds / Structure elucidation / Density functional theory / NBO analysis

Treatment of L_nGeCl_{4-n} with D(C₆H₄SH)₂ in the presence of nBuLi leads to the formation of the stable compounds $D(C_6H_4S)_2GeL_1L_2$ (for D = S, $L_1 = Cl$, $L_2 = Ph$, 1 and $L_1 = L_2$ = Ph, 3; for D = O, L_1 = Cl, L_2 = Et, 4 and L_1 = L_2 = Ph, 5). The S(C₆H₄S)₂Ge(Ph)Br compound (2) has been synthesised by halogen exchange from 1 and potassium bromide. X-ray structure determinations of complexes 1-5 reveal that the germanium atom acts as an acceptor atom displaying an intramolecular transannular interaction with the chalcogen D atom. The geometry of the pentacoordinate Ge atom in the

title compounds is described as distorted trigonal bipyramidal with a 64-31 % distortion displacement. The D→Ge (D = S, O) hypercoordinate interaction was studied by DFT methods using correlation consistent basis sets and relativistic ECP for Ge. NBO analysis showed that this interaction can be explained in terms of the interplay of covalent and Coulombic interactions.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

In order to gain a deeper insight into the nature of the secondary bonding^[1] and its relation with the hypercoordination phenomena of group 14 and 15 elements, a large variety of metallocanes of type I D(CH₂CH₂E)₂A (D = NR', O, S; E = O, S, CH_2 ; A = Ge, Sn, Pb, As, Sb or Bi) have been prepared and structurally characterised (Scheme 1).^[2-8] In the solid state metallocanes usually exhibit a strong 1,5-transannular interaction between a Lewis acidic acceptor A and a basic donor D atom (D \rightarrow A), where the coordination mode of the ligand D(CH₂CH₂E)₂²⁻ is formally tridentate, leading to an increase in the coordination number of A. In these compounds the richness of the conformational diversity in the solid state and solution is supported by a wide variety of molecular structural features, for example bond lengths, bond angles, torsion angles and the central eight-membered ring conformation, as well as intermolecular interactions in the crystal.[2]

Crystallographic X-ray studies of the more constrained tricyclic systems of type II, known as dibenzometallocines D(C₆H₄E)₂A (Scheme 1), have also shown a 1,5-transannular interaction. These compounds have been long studied in particular where D = S, E = O and A is a d block or light p

- E-mail: jgar@uaeh.edu.mx
 [b] Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, D. F. México, C. P. 04510, México

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Eur. J. Inorg. Chem. 2006, 4752-4760

Scheme 1.

block element (mainly phosphorus and silicon), meanwhile, with a softer donor atom such as D = E = S the chemistry is fully dominated by the d block metals.^[9] In these transition metal complexes the transannular distance between the acidic metal centre and the thioether-like sulfur is usually quite short, suggesting the large capabilities of the S(C₆H₄S)₂²⁻ as a tridentate ligand.

We have studied some monohalogenated dibenzometallocines $D(C_6H_4S)_2AHal$ (for $A = Sb^{[5]}$, D = S, Hal = Cl, Br, $I_{r}^{r} D = O, Hal = Cl; for A = As^{[10]}, D = S, Hal = Cl, Br, I)$ and have shown by means of X-ray crystallographic studies (and also DFT studies in the case of antimony) the acidic behaviour of the central atom, where the A acceptor experiences a structural change from pyramidal tricoordinate to ψ -trigonal-bipyramidal tetracoordinate. These results prompted us to extend the chemistry of the ligand S(C₆H₄S)₂²⁻ to other p block heavier elements such as germanium(IV), where structural studies with similar ligands are scarce^[11-14] and have mainly focused on metallocanes.[2-4]

Here we report an experimental and theoretical study of type II complexes with germanium as the acceptor atom. These compounds are good models for further understand-

[[]a] Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Pachuca, Hidalgo,

C. P. 42076, México

ing the nature of the D—Ge interaction. After the description of the synthesis of dibenzogermocines and the NMR spectroscopic and X-ray crystallographic data a theoretical study is presented and discussed.

Results and Discussion

Synthesis

The ligands $S(C_6H_4SH)_2$ and $O(C_6H_4SH)_2$ were prepared following the reported method.^[9,15] The reaction of the corresponding organylgermanium(IV) in THF at 0 °C with the dilithium salt of the ligand, generated in situ from the dithiol and 2 equiv. of *n*BuLi, yielded the corresponding Ge^{IV} complex (see Exp. Sect. for details). Treatment of $S(C_6H_4SLi)_2$ with PhGeCl₃ and Ph₂GeCl₂ yielded $S(C_6H_4S)_2$ -GePhCl (1) and $S(C_6H_4S)_2GePh_2$ (3), respectively. $S(C_6H_4S)_2GePhBr$ (2) was synthesised from 1 by the treatment of excess KBr in a refluxing HBr/benzene mixture, giving 2 as colourless crystals. Treatment of $O(C_6H_4SLi)_2$ with EIGeCl₃ and Ph₂GeCl₂ yielded $O(C_6H_4S)_2GeEtCl$ (4) and $O(C_6H_4S)_2GePh_2$ (5), respectively (see Scheme 2).

Scheme 2.

All complexes are air-stable, soluble in benzene, toluene, dichloromethane and chloroform, and insoluble in pentane, hexane and 2-propanol.

Mass Spectra

FAB mass spectra for 1, 2, 3 and 5 and electron impact mass spectra for 4 exhibit a low intensity ion with the appropriate isotopic ratio representing the molecular ion (M^{-+}); in all cases a basis peak corresponding to the fragment M-L [L = Cl (1), Br (2), Ph (3 and 5), Et (4)] is observed and assigned to the D(C₆H₄S)₂GeL [L = Ph (1, 2, 3 and 5), and Cl (4)] tricyclic moiety, confirming the binding of germanium to the sulfur thiolate-like atoms. There are peaks corresponding to the D(C₆H₄)₂S moiety [D = S (1, 2, 3); O (4, 5)] in all the spectra. In the case of the diphenyl germanium complexes 3 and 5 the cluster peak at 229 mlz is assigned to the protonated GePh₂ fragment. No more peaks could be assigned.

NMR Spectroscopy

NMR spectra of complexes 1-5 were recorded in a CDCl₃ solution at room temperature. Chemical shifts are relative to TMS. The assignments of these complexes were carried out by heteronuclear and homonuclear correlation two-dimensional experiments (HETCOR, COLOC and COSY).

¹H NMR spectra for complexes 1–5 each show four signals for the DC_6H_4SGe moiety in an ABCD pattern, Table 1. In solution the two DC_6H_4SGe halves are equivalent (see Scheme 3). In all complexes, the *ortho* proton 1-H is shifted towards high frequencies with respect to the free

Scheme 3.

Table 1. ¹H NMR chemical shifts (& values [ppm]) for 1-5 in CDCl₃ at 25 °C.

Compound	D	L ₁	1-H	2-H	3-H	4-H	5-H	6-H	7-H
1	S	Cl	7.65	7.27	2.16	7.44	7.81	7.40	7.40
2	S	Br	7.65	7.28	7.16	7.44	7.78	7.39	7.39
3	S	Ph	7.66	7.13	7.18	7.44	7.63	7.34	7.34
4	0	Cl	7.53	7.23	7.15	7.13	1.80	1.18	-
5	0	Ph	7.56	7.09	7.04	6.85	7.65	7.32	7.32

Table 2. ¹³C NMR chemical shifts (δ values [ppm]) for 1-5 in CDCl₃ at 25 °C.

Compound	D	L_1	C-1	C-2	C-3	C-4	C-la	C-4a	C-5	C-5a	C-6	C-7
1	S	CI	131.2	129.9	127.5	134.2	132.3	140.7	131.2	141.4	128.9	130.9
2	S	Br	131.2	129.9	127.5	134.3	132.3	140.7	131.1	141.9	128.9	132.1
3	S	Ph	134.3	127.4	128.3	134.9	137.4	139.8	133.2	138.2	128.5	130.0
4	0	Cl	132.6	127.7	125.8	120.2	126.2	152.7	23.1	-	8.3	-
5	0	Ph	133.7	127.5	124.6	120.6	126.6	154.8	133.6	136.4	128.4	130.1

Eur. J. Inorg. Chem. 2006, 4752-4760

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.eurjic.org

Proton decoupled ¹³C spectra of complexes 1–3 and 5 display ten signals in the aromatic region, Table 2. In 4 the ethyl group is observed at low frequencies (23.1 and 8.3 ppm). In complexes 1–5 the values obtained for the variation of the chemical shift ($\Delta\delta$) with respect to the starting materials (free ligands and organogermanium chlorides) show the ipso carbon C-4a and the carbon C-4 at high frequencies; in these compounds the 1–3 complexes present large values of $\Delta\delta$. The $\Delta\delta$ value for the C-4a and C-4 in 1 are 8.2 and 4.0 ppm; in 2 they are 8.2 and 4.1 ppm; in 3 they are 7.3 and 4.7 ppm; in 4 they are 0.6 and 1.6 and in 5 they are 2.7 and 2.0 ppm, respectively. In the double J. G. Alvarado-Rodríguez et al.

phenylated 3 and 5 complexes the $\Delta\delta$ for the ipso carbon C5a presented the smallest values when compared to the diphenylgermanium dichloride ($\delta = 3.7$ ppm in 3 and 1.9 ppm in 5). The data obtained suggest that the D \rightarrow Ge transannular interaction in the complexes 3 and 5 is either very weak or completely lacking in solution.

X-ray Structures of Compounds 1-5

The molecular structures in the crystalline solid state of 1-5 were determined by single-crystal X-ray diffraction analyses. The ORTEP drawings are depicted in Figure 1 and selected bond lengths, angles and torsion angles are

Figure 1. ORTEP diagrams of $S(C_6H_4S)_2GePhCl$ (1), $S(C_6H_4S)_2GePhBr$ (2), $S(C_6H_4S)_2GePh_2$ (3), $O(C_6H_4S)_2GeEtCl$ (4) and $O(C_6H_4S)_2-GePh_2$ (5) (50% probability ellipsoids).

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Eur. J. Inorg. Chem. 2006, 4752-4760

given in Table 3. In all compounds, there were no intermolecular interactions between non-hydrogen atoms that were separated by a distance shorter than the sum of their van der Waals radii. This essentially resulted in monomeric molecules.

Table 3. Selected bond lengths [Å] and bond angles [°] of $D(C_6H_4S)_2L_1GeL_2.$

Compound	1	2	3	4	5
D	S	S	S	0	0
L,	CII	Brl	C19	Cll	C19
L ₂	C13	C13	C13	C13	C13
D→Ge1	2.834(1)	2.782(2)	3.280(1)	2.656(3)	2.872(3)
Gel-S1	2.236(1)	2.228(2)	2.235(1)	2.231(1)	2.229(1)
Ge1-S2	2.228(1)	2.216(2)	2.255(1)	2.221(1)	2.239(1)
Ge1-L ₁	2.233(1)	2.401(1)	1.959(3)	2.187(1)	1.938(4)
Ge1-L2	1.941(3)	1.943(5)	1.942(4)	1.943(4)	1.954(4)
D	169.57(4)	175.99(4)	168.3(1)	166.97(6)	169.5(1)
SI-Gel-S2	115.35(4)	114.42(7)	110.58(4)	115.47(5)	111.65(5)
SI-Gel-L2	120.5(1)	120.89(2)	112.3(1)	115.0(1)	113.8(1)
S2-Ge1-L2	119.0(1)	120.2(2)	113.7(1)	116.7(1)	111.6(1)
L1-Gel-L2	101.6(1)	98.6(2)	113.6(1)	108.8(2)	113.4(2)
SI-Gel-L ₁	98.47(4)	97.03(5)	100.6(1)	98.6(1)	100.8(1)
S2-Gel-L	92.46(4)	95.59(5)	105.1(1)	98.86(5)	104.8(1)
C7-D-C6-C1	127.6(3)	125.3(4)	61.0(3)	142.9(3)	87.9(4)
C6-D-C7-C12	-74.4(3)	-77.5(5)	-122.9(3)	-87.4(4)	-137.2(4)
\$2-Ge1-\$1-C1	-31.1(1)	-40.3(2)	-97.7(1)	-33.0(1)	-94.0(1)
S1-Ge1-S2-C12	99.1(1)	100.7(2)	11.7(1)	98.6(1)	31.9(2)

In all complexes, the Ge-S(thiolate) distances are in good agreement with those reported for eight-membered heterocycles and several other compounds containing germanium-sulfur bonds: 2.191(3) Å in S(CH2CH2S)2GeCl2,[16] 2.154(4)-2.217(4) Å in O(CH2CH2S)2GeCl2,117 2.216(1)-2.222(1) and 2.210(3)-2.236(3) Å in the spirocycles {O(CH₂CH₂S)₂}₂Ge and {S(CH₂CH₂S)₂}₂Ge,^[18] respectively, 2.111(1)-2.221(1) Å in the homoleptic Ge(S-4-MeC₆H₄)₄ compound,^[19] but significantly shorter than the reported value in the spirocycle {PhP(C₆H₄S)₂}₂Ge with a germanium atom in an octahedral local geometry [2.3429(12)-2.4000(10) Å].[11] The Ge-Cl distances in 1 and 4 are 6 and 4% longer, respectively, than that accepted as the common distance for Ge-Cl (2.10 Å in GeCl₄)^[20] and similar to those found for D(CH₂CH₂S)₂GeCl₂ (D = O^[17], S^[16]); which are longer than that found in the 9,9-dichloro-9-germafluorene [2.1660(9) Å].[21] The Ge-Br distance is

intermediate between those found in MeN(CH₂CH₂O)₂-GeBr₂ [2.4148(8) and 2.3215(9) Å].^[4] The Ge-C distances are in good agreement with other compounds that contain

germanium-carbon bonds.[12,22-24] In addition to the expected bonding of the two sulfur atoms (thiolate-like) and the two exocyclic L1 and L2 ligands to germanium, a relatively short distance involving the transannular D and Ge atoms is observed (D = S in 1, 2 and 3; D = O in 4 and 5). The S \rightarrow Ge bond lengths in 1, 2 and 3 are 2.834(1), 2.782(2) and 3.280(1) Å, respectively, which are 27, 24 and 46% longer than the covalent radii sum of Ge and S (2.24 Å)[25] but significantly shorter than the van der Waals radii sum (3.75 Å).[1,14] The magnitude of these distances is consistent with the existence of a secondary bonding.^[1] These S-Ge distances in 1, 2 and 3 are similar for the spirocycles S(CH2CH2S)2GeSO(C2H4) [2.842(1) Å],^[2] [S(CH₂CH₂S)₂]₂Ge [3.237(3) and 3.453(3) Å],[18] and S(CH2CH2S)2GeCl2 [3.01(3) Å],[16] and significantly longer than that reported for the spirocycle [S(C₆H₄O)₂]₂Ge [2.447(1) Å].^[14]

The O-Ge distances in 4 [2.656(3) Å] and 5 [2.872(3) Å] are significantly shorter than the van der Waals radii sum of Ge and O (3.47 Å)^[1] and 41% and 53% longer than the covalent radii sum (1.88 Å), [2,25] respectively. The observed $O \rightarrow Ge$ bond lengths in 4 and 5 are significantly longer than those reported for O(CH2CH2S)2GeCl2 [2.36(1) and 2.39(1) Å],[17] for the spirocycles containing pentacoordinate germanium O(CH2CH2S)2GeSO(C2H4) [2.492(3) Å] and O(CH2CH2S)2GeS2(C2H4) [2.616(1) Å], and shorter than those reported for the spiro compound containing hexacoordinate germanium [O(CH2CH2S)2]2Ge displaying two crystallographic independent molecules in the solid state [2.914(3), 3.040(3), 2.955(3) and 2.946(3) Å]^[18]. If the transannular interaction (D-Ge) is taken into account, the geometry of the coordination sphere of the germanium atom can be described as trigonal bipyramidal (TBP), where the halogen (for 1, 2 and 4), carbon (for 3 and 5) and D donor atoms (S for 1, 2, 3, O for 4, 5) are in the axial positions, meanwhile the two thiolate-like sulfur and carbon atoms occupy equatorial positions.

the common distance for Ge–Cl (2.10 Å in GeCl₄)^[20] and similar to those found for D(CH₂CH₂S)₂GeCl₂ (D = $O^{[17]}$, S^[16]); which are longer than that found in the 9,9-dichloro-9-germafluorene [2.1660(9) Å].^[21] The Ge–Br distance is 4% longer than that observed for GeBr₄ (2.30 Å)^[20] and - order to evaluate the magnitude of the interaction based

Table 4. Comparison of D \rightarrow Ge-L₁ geometrical bond parameters in complexes 1–5; bond lengths [Å], bond angles [°], % TBP and Pauling bond order.

Compound	D	L	L ₂	D→Ge	D→Ge-L1	% TBP	$\Delta d^{\{a\}}$	BO ^[b] D→Ge
1	S	CI	Ph	2.834(1)	169.57(4)	60.7	0.594	0.1453
2	S	Br	Ph	2.782(2)	175.99(4)	64.1	0.542	0.1721
3	S	Ph	Ph	3.280(1)	168.3(1)	31.1	1.038	0.0343
4	0	CI	Et	2.656(3)	166.97(6)	51.2	0.778	0.0799
5	0	Ph	Ph	2.872(3)	169.5(1)	37.6	0.992	0.0399

[a] Bond widening, $\Delta d = (d_{exp} - \Sigma r_{cov})$, according to standard bond lengths d(Ge S) 2.24, d(Ge O) 1.88.^[1,2,14,25] [b] Mode of calculation BO = 10^{-(1,4):\Delta d}, [29,30]

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.eurjic.org 4755

on the distances, the Pauling-type bond order, BO, for the transannular interactions (D \rightarrow Ge) in all compounds was also calculated.^[29,30]These results are reported in Table 4.

The TBP% for halogen compounds are larger than those for other compounds in the series, indicating the importance of attaching an electronegative ligand to germanium in order to expand its coordination number.

In all compounds the eight-membered ring conformation can be described as a twist boat (C_1 symmetry) according to the torsion angle data, where the double phenylated **3** and **5** compounds are most distorted when the TBP and BO order are smaller.

Theoretical Study

In order to study the intramolecular interactions (D-Ge) we carried out theoretical calculations. Hence, each one of the compounds 1-5 was modelled with a GaussView visualizer,^[31] followed by a geometry optimisation with the PM3 semi-empirical method^[32]. A further geometry optimisation was carried out with density functional theory (DFT) using the hybrid B3LYP functional^[33]. For our DFT computations we employed the relativistic Stuttgart-Dresden Effective Core Potential for Ge[34] along with its Triple-Zeta correlation consistent basis set^[35]. For all the other atoms in compounds 1 to 5, Dunning's Double-Zeta correlation consistent all electron basis set^[36] was used. The basis sets we employed include polarisation and diffusion functions. Hereafter these calculations will be referred to as B3LYP ccSDDTZ. The computed bond orders, interatomic overlaps and charges reported herein were computed within the NBO approach.[37] All our calculations were carried out with the suite of programmes in Gaussian 03.[38]

Theoretical Results and Discussion

All optimised molecular conformations for 1-5 are in good agreement when compared with those observed by Xray crystallographic data. A selected set of bond lengths and bond and torsion angles is listed in Table 5. It is relevant to mention that we explored the two possible geometrical isomers for complexes 1, 2 and 4, i.e. those with the halogen ligand in an axial or in an equatorial position, where isomers that resemble the conformation determined by X-ray diffraction experiments were the most stable. These correspond to the lowest energy conformation of those obtained with the procedure previously outlined. A comparison between the X-ray and the computed D-Ge bond lengths shows a remarkable difference for compounds 1, 2 and 3. The largest difference is for compound 2 (≈ 0.39 Å), followed by that of compounds 1 and 3, ≈ 0.32 Å and ≈ 0.05 Å respectively, whereas for compounds 4 and 5 we noticed that the distances O-Ge are ca. 0.13 Å and 0.07 Å larger than those obtained by X-ray spectroscopy at 298 K. The DFT calculations at the level employed reproduce well the experimental overall geometries; the observed differences in the geometrical parameters are not unusual^[3] and may be due to the temperature of the diffraction experiments as well as the packing forces in the crystal.

NBO Analysis

In Table 6 the computed Wiberg bond index values for a selected number of atoms in compounds 1-5 are reported. It is worth noting that this index has approximately the same value for all germanium-sulfur thiolate bonds. However, in 1-3 this bond index is bigger for the S(thiolate-

Table 5. Selected bond lengths [Å] and angles [°] for compounds 1–5. a columns are data from X-ray characterisation. b columns are data obtained from B3LYP ccSDDTZ computations.

Compound	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b
D	S	S	S	S	S	S	0	0	0	0
LI	Cll	CII	Br1	Br1	C19	C19	Cll	CII	C19	C19
L2	C13	C13								
D→Ge1	2.834(1)	3.157	2.782(2)	3.181	3.280(1)	3.328	2.656(3)	2.781	2.872(3)	2.944
Gel-Sl	2.236(1)	2.278	2.228(2)	2.280	2.235(1)	2.281	2.231(1)	2.272	2.229(1)	2.286
Ge1-S2	2.228(1)	2.273	2.216(2)	2.273	2.255(1)	2.297	2.221(1)	2.278	2.239(1)	2.288
Ge1-L1	2.233(1)	2.215	2.401(1)	2.377	1.959(3)	1.970	2.187(1)	2.210	1.938(4)	1.966
Ge1-L2	1.941(3)	1.953	1.943(5)	1.955	1.942(4)	1.960	1.943(4)	1.969	1.954(4)	1.960
D-Gel-L1	169.57(4)	169.79	175.99(4)	169.69	168.3(1)	170.32	166.97(6)	169.89	169.5(1)	168.40
D-Gel-Sl	77.60(3)	72.68	80.64(5)	72.14	73.36(3)	73.71	74.35(6)	72.75	71.94(6)	70.80
D→Ge1-S2	80.76(3)	76.42	82.45(5)	76.01	68.78(3)	69.61	75.17(6)	73.40	71.98(6)	69.56
D→Ge1-L2	88.7(1)	84.90	85.3(2)	84.40	78.2(1)	78.66	84.2(1)	84.16	76.8(1)	79.05
SI-Gel-L1	98.47(4)	102.75	97.03(5)	103.09	100.6(1)	102.79	98.57(5)	102.08	100.8(1)	104.43
S2-Gel-L1	92.46(4)	97.84	95.59(5)	98.27	105.1(1)	104.07	98.86(5)	101.84	104.8(1)	103.83
S1-Ge1-S2	115.35(4)	114.14	114.42(7)	113.96	110.58(4)	111.01	115.47(5)	114.93	111.65(5)	112.52
S1-Ge1-L2	120.5(1)	115.14	120.9(2)	114.68	112.4(1)	113.63	115.0(1)	113.92	113.8(1)	110.83
S2-Ge1-L2	119.0(1)	118.13	120.2(2)	117.81	113.7(1)	113.49	116.7(1)	115.79	111.6(1)	112.28
L1-Ge1-L2	101.6(1)	105.30	98.6(2)	105.91	113.6(1)	110.90	108.8(2)	105.94	113.4(2)	112.52
C6-D-C7	101.7(2)	103.58	101.7(3)	103.56	103.0(2)	103.57	116.6(3)	118.33	116.3(3)	118.28
S2-Ge1-S1-C1	-31.1(1)	-19.40	-40.3(2)	-18.33	-97.7(1)	-95.25	-33.0(1)	-29.68	-94.0(1)	-91.76
S1-Ge1-S2-C12	99.1(1)	97.02	100.7(2)	96.56	11.7(1)	15.49	98.6(1)	95.50	31.9(2)	23.31

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Eur. J. Inorg. Chem. 2006, 4752-4760

Pentacoordination at Ge by Transannular Bonding of S or O

like) \rightarrow Ge than for the S(thioether-like) \rightarrow Ge interaction. A similar trend is exhibited by the O \rightarrow Ge interaction in compounds 4 and 5.

Table 6. NBO values of Wiberg bond index for a selected number of atoms in compounds 1–5. Data from B3LYP ccSDDTZ computations.

Compound	1	2	3	4	5
D	S	S	S	01	01
LI	CII	Brl	C19	CII	C19
1.2	C13	C13	C13	C13	C13
D→Ge1	0.1080	0.1027	0.0594	0.0579	0.0357
Ge1-S1	0.8308	0.8303	0.8561	0.8438	0.8478
Ge1-S2	0.8506	0.8543	0.8185	0.8349	0.8350
Ge1-L1	0.7757	0.8356	0.7233	0.7880	0.7326
Ge1-L2	0.7154	0.7149	0.7260	0.7538	0.7292
D-C6	1.0088	1.0091	1.0258	0.9120	0.9089
DC7	1.0201	1.0207	1.0121	0.9012	0.9245
S1C1	1.0557	1.0551	1.0628	1.0587	1.0587
S2-C12	1.0634	1.0611	1.0558	1.0587	1.0565

To study the nature of this short Wiberg bond index, the computed overlap-weighted natural atomic orbital values are reported in Table 7. From this table it is possible to observe that compounds 1–3, which contain the S \rightarrow Ge interaction, have larger overlap values than compounds 4 and 5, which contain the O \rightarrow Ge interaction. It is important to observe that 3 and 5 exhibit the smallest overlap value in these two groups of molecules.

Table 7. NBO computed overlap-weighted natural atomic orbital values for compounds 1–5. Data from computations with B3LYP cc-SDDTZ basis sets.

Compound	1	2	3	4	5
D	\$3	S 3	S 3	01	01
LI	Cll	Brl	C19	Cll	C19
L2	C13	C13	C13	C13	C13
D→Ge1	0.1484	0.1429	0.0906	0.0877	0.0559
Ge1-S1	0.7770	0.7728	0.7757	0.7880	0.7685
Ge1-S2	0.7899	0.7885	0.7516	0.7810	0.7632
Gel-L1	0.7314	0.7899	0.7318	0.7389	0.7410
Ge1-L2	0.7403	0.7336	0.7406	0.7614	0.7438

As a final element for our theoretical analysis we report, in Table 8, the charges obtained within the NBO procedure. It may be observed that the sulfur donor atoms in compounds 1–3 exhibit approximately the same positive charge, whereas the thiolate-like sulfur atoms roughly have the same negative charge. This may be a consequence of the different environments of the sulfur atoms in the dibenzotrithiagermocines: atoms S1 and S2 are dicoordinate and covalently bonded to a rather electropositive germanium atom while the S3 atom is bonded to a more electronegative carbon atom and also shares its electron density with the acidic germanium(IV) atom. The O1 atom in 4 and 5 has the same negative charge, according to the electronegativity of oxygen.

for compounds 1–5. Computations with B3LYP cc-SDDTZ basis sets.

Table 8. Selected atom charges obtained within the NBO procedure

Compound	1	2	3	4	5
D	\$3	S 3	S3	01	01
D	0.30	0.30	0.30	-0.56	-0.56
S1	-0.13	-0.13	-0.13	-0.12	-0.13
S2	-0.11	-0.11	-0.16	-0.11	-0.15
Ge3	1.28	1.19	1.40	1.29	1.40
Cl1	-0.41	-	-	-0.41	-
Brl	-	-0.32	-	-	-
C13	-0.51	-0.51	-0.50	-0.89	-0.50
C19	-	-	-0.50	-	-0.50

Discussion

The calculated Wiberg bond index values in Table 6 show the existence of a bond interaction between the D \rightarrow Ge (where D = S or O) in compounds 1 to 5. The reported numerical values in Table 7 for the NAO overlap-weighted analysis confirm this bond possibility and give it a covalent like character. However, the reported atomic charges in Table 8 suggest the possibility of interatomic interactions with a Coulombic character.

We may conclude that the interaction S3 \rightarrow Ge in 1 and 2 has two components: one covalent and a second one with a Coulombic character. In these two compounds the interaction is dominated by a covalent interaction, which screens the positive-positive S3–Ge Coulomb interaction. This behaviour is enhanced by the halogen atom coordinated to Ge and its role in the Coulomb field within the molecule. Similar arguments may be given to the O1 \rightarrow Ge interaction in 4. However, in this case, the negative charge on the oxygen donor atom increases the intensity of the Coulomb field making this the dominant part of this interaction.

In compounds 3 and 5 we have the opportunity to appreciate how this covalent-Coulombic dual character works. In this case we do not have halogen atoms to enhance the interchange. Hence S3 \rightarrow Ge in 3 has a more covalent than Coulombic character, whereas O1 \rightarrow Ge is dominated by a strong Coulomb interaction, which makes their intramolecular distances shorter supporting the results of the structural analyses in terms of our TBP and BO analyses for these complexes.

Conclusions

In order to study the phenomena of hypercoordination in germanium heterocyclic compounds we have synthesised and fully structurally characterised five new dibenzogermocines 1–5 by employing tridentate $[D(C_6H_4S)_2]^{2-}$ ligands. All compounds exhibit a bipyramidal-trigonal local geometry of the germanium(IV) atom with intramolecular interactions D–Ge. Geometry optimisations at the DFT level of theory, using the hybrid functional B3LYP renders molecular conformations in good agreement to those determined by X-ray diffraction studies. An NBO analysis was carried out on this electron structure. The TBP and BO analysis

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.curjic.org

4757

FULL PAPER

for the crystalline molecular structure and our NBO analysis show similar behaviour for the $D \rightarrow Ge$ interaction, which is enhanced by the presence of the halogen ligands.

Experimental Section

General Procedures: All manipulations were performed under a dry, oxygen-free argon atmosphere using standard Schlenk techniques. Solvents were dried by standard methods and distilled prior to use. Melting points were determined with a Melt-Temp II instrument and are uncorrected. Spectra were recorded with the following instruments. Mass spectra: FAB-mass spectra were recorded with a JEOL JMS-AX505HA by using a Xe beam at 6 keV, with nitrobenzyl alcohol (NBA) as matrix. For El, a Hewlett Packard 5989A mass spectrometer was used. Elemental analyses: Perkin-Elmer Series II CHNS/O Analyser. The IR spectra were record in the 4000-400 cm-1 range with a Perkin-Elmer System 2000 FT-IR spectrometer, as KBr pellets. NMR: Jeol Eclipse 400 spectrometer; with the residual protio-solvent signal used as referenced for ¹H NMR spectra. 13C{1H} NMR spectra were referred through the solvent peaks. Chemical shifts are quoted on the δ scale (downfield shifts are positive) relative to tetramethylsilane (1H, 13C{1H} NMR spectra). Spectra were recorded at 25 °C. 'H NMR spectra; 399.78 MHz, 13C{1H} NMR spectra; 100.53 MHz. S(C6H4SH)2[15] and O(C6H4SH)2[9] were synthesised according to literature methods. PhGeCl₃, Ph2GeCl₂, EtGeCl₃, nBuLi (1.6 M, in hexanes), KBr and HBr were purchased from Aldrich and Fluka and were used as supplied.

S(C6H4S)2GePhCl (1): nBuLi in hexanes (1.6 м, 5.5 mL, 8.8 mmol) was added to a solution containing S(C6H4SH)2 (1.0 g, 4.0 mmol) in THF (40 mL) at 0 °C. After the solution was stirred for 30 min, a red solution resulted, PhGeCl3 (0.66 mL, 4.0 mmol) was added via a syringe. The solution was kept overnight at room temperature. The colourless solution was refluxed for 4 h, and then the resultant heterogeneous reaction mixture was cooled to room temperature. The precipitate of LiCl was removed by filtration. Volatiles were removed under an argon flow to provide colourless crystals of 1, which were washed with hexanes (40 mL) and filtered by suction. Yield: 1.50 g (86%). Mass spectrum (FAB+) m/z (rel int) = 434 (5) [M+], 399 (50) [M+ - Cl], 216 (45) [M+ - Cl-PhSGe]. M.p. 201-203 °C. S(C6H5S)2GePhCl: calcd. C 49.56, H 3.22; found C 49.76, H 3.20. ¹H NMR (CDCl₃): δ = 7.16 (ddd, ³J_{3-H,2-H} = ³J_{3-H,4-H} = 7.74, ${}^{4}J_{3-H,1-H} = 1.44$ Hz, 2 H, 3-H), 7.27 (ddd, ${}^{3}J_{2-H,1-H} =$ ${}^{3}J_{2-H,3-H} = 7.74, {}^{4}J_{2-H,4-H} = 1.44$ Hz, 2 H, 2-H), 7.40 (m, 3 H, 6-H and 7-H), 7.44 (dd, ${}^{3}J_{4-H,3-H} = 7.74$, ${}^{4}J_{4-H,2-H} = 1.44$ Hz, 2 H, 4-H), 7.65 (dd, ${}^{3}J_{1-H,2-H} = 7.74$, ${}^{4}J_{1-H,3-H} = 1.44$ Hz, 2 H, 1-H), 7.81 (m, 2 H, 5-H) ppm. ¹³C{¹H} NMR (CDCl₃): δ = 127.5, 128.9, 129.9, 130.9, 131.1, 131.2, 132.2, 134.2, 140.7, 141.5 ppm. IR (KBr pellet): $\tilde{v} = 3045$, 1568, 1480, 1445, 1430, 1247, 1078, 1040, 1032, 851, 754, 733, 714, 689, 657 cm⁻¹.

S(C₆H₄S)₂GePhBr (2): S(C₆H₄S)₂GePhCl (1, 0.26 g, 0.60 mmol), KBr (0.18 g, 1.5 mmol) and HBr 48% (2 mL) were suspended in benzene (25 mL) and refluxed for 16 h. The water was removed from the resulting colourless solution by means of a Dean–Stark trap. The solution obtained was dried by means of a column of Celite and Na₂SO₄. The solution was left under an argon flow to provide colourless crystals of **2**, which were washed with hexanes (40 mL) and filtered by suction. Yield: 180 mg (63%). Mass spectrum (FAB+) *mlz* (rel int) = 478 (3) [M⁺], 399 (50) [M⁺ – CI], 216 (20) [M⁺ – CI – PhSGe]. M.p. 197–199 °C. S(C₆H₅S)₂GePhBr: calcd. C 45.23, H 2.74; found C 45.96, H 2.74. ¹H NMR (CDCI₃): δ = 7.16 (ddd, ³J_{3-H,2-H} = ³J_{3-H,4-H} = 7.68, ⁴J_{3-H,1-H} = 1.48 Hz, 2 H, 3-H), 7.27 (ddd, ${}^{3}J_{2-H,1-H} = {}^{3}J_{2-H,3-H} = 7.68$, ${}^{4}J_{2-H,4-H} = 1.48$ Hz, 2 H, 2-H), 7.39 (m, 3 H, 6-H and 7-H), 7.44 (dd, ${}^{3}J_{4-H,3-H} = 7.68$, ${}^{4}J_{4-H,2-H} = 1.48$ Hz, 2 H, 4-H), 7.65 (dd, ${}^{3}J_{1-H,2-H} = 7.68$, ${}^{4}J_{1-H,3-H} = 1.48$ Hz, 2 H, 1-H), 7.78 (m, 2 H, 5-H) ppm. ${}^{13}C{}^{11}H$ NMR (CDCl₃): $\delta = 127.5$, 128.9, 129.9, 130.9, 131.0, 132.1, 132.3, 134.3, 140.7,141.9 ppm. IR (KBr pellet): $\bar{\nu} = 3050$, 1568, 1445, 1442, 1249, 1081, 1039, 862, 735, 730, 710, 692 cm⁻¹.

S(C6H2S)2GePh2 (3): This compound was prepared in a similar fashion to compound 1, with S(C6H4SH)2 (0.42 g. 1.68 mmol), nBuLi in hexanes (1.6 M, 2.3 mL, 3.7 mmol) and Ph2GeCl2 (0.35 mL, 1.68 mmol). Colourless crystals were obtained. Yield: 0.50 g (63%). Mass spectrum (FAB+) m/z (rel int) = 476 (18) [M+], 399 (base peak) [M⁺ - Ph], 216 (65) [M⁺ - Ph - Ph - SGe]. M.p. 126-128 °C. S(C6H3S)2Ph2Ge: calcd. C 60.66, H 3.82; found C 60.83, H 3.98. ¹H NMR (CDCl₃): $\delta = 7.13$ (ddd, ${}^{3}J_{2-H,1-H} =$ ${}^{3}J_{2-H,3-H} = 7.72$, ${}^{4}J_{2-H,4-H} = 1.44$ Hz, 2 H, 2-H), 7.18 (ddd, ${}^{3}J_{3-H,2-H} = {}^{3}J_{3-H,4-H} = 7.72, {}^{4}J_{3-H,1-H} = 1.44$ Hz, 2 H, 3-H), 7.34 (m, 6 H, 6-H and 7-H), 7.44 (dd, ${}^{3}J_{4-H,3-H} = 7.72$, ${}^{4}J_{4-H,2-H} = 1.44$ Hz, 2 H, 4-H), 7.63 (m, 4 H, 5-H), 7.66 (dd, ${}^{3}J_{1-H,2-H} = 7.72$, ${}^{4}J_{1-H,3-H}$ = 1.44 Hz, 2 H, 1-H) ppm. ¹³C{¹H} NMR (CDCl₃): δ = 127.4, 128.4, 128.5, 130.0, 133.2, 134.3, 134.9, 137.4, 138.2, 139.8 ppm. IR (KBr pellet): 3066, 3047, 1568, 1480, 1444, 1431, 1248, 1085, 1040, 859, 752, 734, 716, 693 cm-1.

O(**C**₆**H**₄**S**)₂**GeEtCI** (4): This compound was prepared in a similar fashion to compound 1, with O(C₆H₄SH)₂ (0.92 g, 3.9 mmol), *n*BuLi in hexanes (1.6 M, 5.0 mL, 8.0 mmol) and EtGeCl₃ (0.5 mL, 3.9 mmol). The solid was filtered and recrystallised from *i*-PrOH. Colourless crystals were obtained. Yield: 0.20 g (28%). Mass spectrum (EI-MS, CHCl₃, 30 eV) *mlz* (rel int) = 370 (10) [M⁺], 341 (20) [M⁺ - Et], 305 (10) [M⁺ - Et - Cl], 200 (base peak) [M⁺ - Et]-Cl-GeS]. M.p. 96-98 °C. O(C₆H₄S)₂EtGeCl: calcd. C 45.51, H 3.55; found C 45.80, H 3.55. ¹H NMR (CDCl₃): δ = 1.18 (t, ³*J*_{6-H,5+H} = 7.70 Hz, 3 H, 6-H), 1.80 (q, ³*J*_{2-H,6+H} = 7.70 Hz, 2 H, 5-H), 7.13 (dd, ³*J*_{3-H,2+H} = 7.70, ⁴*J*_{3-H,6+H} = 1.48 Hz, 2 H, 4-H), 7.15 (ddd, ³*J*_{3-H,2+H} = ³*J*_{3-H,4+H} = 7.70, ⁴*J*_{3-H,1-H} = 1.48 Hz, 2 H, 3-H), 7.53 (dd, ³*J*_{1-H,2-H} = 7.70, ⁴*J*_{1-H,3-H} = 1.48 Hz, 2 H, 3-H), 7.53 (dd, ³*J*_{1-H,2-H} = 7.70, ⁴*J*_{1-H,3-H} = 1.48 Hz, 2 H, 1-H) ppm. ¹³C{¹H} NMR (CDCl₃): δ = 8.3, 23.0, 120.2, 125.8, 126.2, 132.6, 152.7 ppm. IR (KBr pellet): 3061, 2958, 2923, 2868, 1564, 1462, 1440, 1210, 1061, 869, 799, 757, 732, 700 cm⁻¹.

O(C₆H₅S)₂GePh₂ (5): This compound was prepared in a similar fashion to compound 1, with O(C₆H₄SH)₂ (0.39 g, 1.66 mmol), *n*BuLi in hexanes (1.6 M, 2.3 mL, 3.7 mmol) and Ph₂GeCl₂ (0.35 mL, 1.68 mmol). Colourless crystals were obtained. Yield: 0.20 g (26%). Mass spectrum (FAB+) *m*/z (rel int) = 460 (35) [M⁺]. 383 (base peak) [M⁺ - Ph], 200 (95) [M⁺ - Ph - PhGeS]. M.p. 105–107 °C. O(C₆H₅S)₂Ph₂Ge: calcd. C 62.78, H 3.95; found C 63.04, H 3.97. ¹H NMR (CDCl₃): $\delta = 6.85$ (dd, ³J_{4-H,3+H} = 7.36, ⁴J_{4-H,2+H} = 1.80 Hz, 2 H, 4-H), 7.04 (ddd ³J_{3-H,2-H} = ³J_{3-H,4+H} = 7.36, ⁴J_{2-H,4+H} = 1.80 Hz, 2 H, 3-H), 7.09 (ddd, ³J_{2-H,1-H} = ³J_{2-H,3+H} = 7.36, ⁴J_{2-H,4+H} = 1.80 Hz, 2 H, 2-H), 7.32 (m, 6 H, 6-H and 7-H), 7.56 (dd, ³J_{1-H,2-H} = 7.36, ⁴J_{1-H,3-H} = 1.80 Hz, 2 H, 1-H), 7.65 (m, 4 H, 5-H⁵) ppm. ¹³C{¹H} NMR (CDCl₃): $\delta = 120.6, 124.7, 126.6, 127.5, 128.4, 130.1, 133.6, 133.7, 136.4, 154.8 ppm. IR (KBr pellet): 3047, 3011, 1565, 1462, 1430, 1249, 1214, 1089, 1063, 870, 800, 763, 755, 733, 696, 669 cm⁻¹.$

X-ray Crystallography: Suitable single crystals of the complexes 1, 2, 3 and 5 were grown by slow evaporation from a chloroform solution. Compound 4 was crystallised from *i*-PrOH. X-ray diffraction data on 1–5 were collected at room temperature on a CCD Smart 6000 diffractometer through the use of Mo- K_{α} radiation ($\lambda = 0.71073$ Å, graphite monochromator). Data were integrated,

4758 www.eurjic.org

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Eur. J. Inorg. Chem. 2006, 4752-4760

Table 9. Selected crystallographic data for compounds 1-5.						
Compound	1	2	3	4	5	
Empirical formula	C18H13ClGeS3	C18H13BrGeS3	C24H18GeS3	C14H13ClGeOS2	C24H18GeOS2	
M_r [g-mol ⁻¹]	433.50	477.96	475.15	369.40	459.09	
Crystal size [mm]	$0.6 \times 0.2 \times 0.1$	$0.6 \times 0.13 \times 0.08$	$0.5 \times 0.3 \times 0.13$	$0.12 \times 0.26 \times 0.60$	0.17×0.23×0.48	
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	triclinic	
Space group	P21/c	ΡĪ	P21/n	P21/n	ΡĪ	
$\rho_{\rm calc} [{\rm Mg} \cdot {\rm m}^{-3}]$	1.592	1.712	1.440	1.593	1.441	
Z	4	2	4	4	2	
a [Å]	9.7904(6)	8.9753(9)	10.8082(9)	10.0723(9)	9.3682(8)	
6 [Å]	10.2618(7)	9.836(1)	14.626(1)	11.301(1)	9.3892(8)	
c [Å]	18.296(1)	12.083(1)	13.961(1)	13.850(1)	12.376(1)	
a [°]	90	79.655(2)	90	90	85.188(2)	
B[°]	100.305(2)	72.417(3)	96.755(2)	102.297(2)	83.538(2)	
7 [°]	90	66.041(2)	90	90	78.649(2)	
VIAI	1808.5(2)	927.3(2)	2191.6(3)	1540.3(2)	1058.4(2)	
$\mu [{\rm mm}^{-1}]$	2.183	4.139	1.691	2.421	1.656	
F(000)	872	472	968	744	468	
GoF	0.909	0.963	0.811	0.837	0.930	
Abs. correction	SADABS	SADABS	SADABS	SADABS	SADABS	
Reflections collected	11696	6117	14261	10798	7098	
Unique reflections Rint	3540; 0.0467	3624; 0.0304	4296; 0.0568	3362; 0.0480	4167; 0.0289	
$R_1, wR_2 [I > 2\sigma(I)]$	0.0357, 0.0794	0.0440, 0.1144	0.0399, 0.0771	0.0426, 0.0892	0.0450, 0.0960	
R_1 , wR_2 (all data)	0.0566, 0.0851	0.0785, 0.1249	0.0800, 0.0859	0.0842, 0.0991	0.0770, 0.1168	
Large residuals [e-Å-3]	0.715/0.427	0.592/-0.790	0.496/-0.268	0.646/-0.322	0.524/-0.260	

scaled, sorted and averaged using the SMART software package. The structures were solved by direct methods, using SHELXTL NT Version 5.10 and refined by full-matrix least-squares against F^{2} .^[39] An empirical absorption correction based on the multiple measurement of equivalent reflections was applied by using the programme SADABS.^[40] The displacement parameters of non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were kept fixed with a common isotropic displacement parameter. Selected crystallographic data are given in Table 9.^[41]

Acknowledgments

J. A. C. wants to thank David Vazquez for the running of the computers and network at IQ-UNAM. We acknowledge DGSCA-UNAM for the generous allocation of CPU time. S. G. M. fully acknowledges the scholarship from CONACyT. This research was supported by CONACyT (Project 44009).

- N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15, 1–58.
 R. Cea Olivares, V. García Montalvo, M. M. Moya Cabrera,
- [2] R. Cea Olivares, V. Garcia Montalvo, M. M. Moya Cabrera, *Coord. Chem. Rev.* 2005, 249, 859–872, and references cited therein.
- [3] S. S. Karlov, E. K. Lermontova, M. V. Zabalov, A. A. Selina, A. V. Churakov, J. A. K. Howard, M. Yu. Antipin, G. S. Zaitseva, *Inorg. Chem.* 2005, 44, 4879–4886.
- [4] S. S. Karlov, E. Kh. Yajuboca, E. V. Gauchenova, A. A. Selina, A. V. Churakov, J. A. K. Howard, D. A. Tyurin, J. Lorberth, G. S. Zajitseva, Z. Naturforsch. Teil, B 2003, 58, 1165–1170.
- G. S. Zaitseva, Z. Naturforsch., Teil B 2003, 58, 1165–1170.
 M. Beuter, U. Kolb, A. Zickgraf, E. Bracu, M. Bletz, M. Draeger, Polyhedron 1997, 16, 4005–4015.
- [6] E. Braeu, A. Zickgraf, M. Draeger, E. Mocellin, M. Maeda, M. Takahashi, M. Takeda, C. Mealli, *Polyhedron* 1998, 17, 2655–2668.
- [7] K. Jurkschat, J. Schilling, C. Mugge, A. Tzschach, J. Meunier Piret, M. van Meerssche, M. Gielen, R. Willem, Organometallics 1988, 7, 38–46.
- [8] A. Zschunke, A. Tzschach, K. Jurkschat, J. Organomet. Chem. 1976, 112, 273–278.

- [9] References cited in J.G. Alvarado Rodríguez, N. Andrade López, S. González Montiel, G. Merino, A. Vela, *Eur. J. Inorg. Chem.* 2003, 3554–3561.
- [10] J. G. Alvarado Rodríguez, N. Andrade López, S. González Montiel, Eur. J. Inorg. Chem. in press.
- [11] M. Y. Chiang, L. Jing Wei, W. Feng Zeng, Acta Crystallogr., Sect. C 2005, 61, m84-m85.
- [12] T. Thompson, S. D. Pastor, G. Rihs, Inorg. Chem. 1999, 38, 4163–4167.
- [13] D. Pastor, V. Huang, D. NabiRahni, Phosphorus, Sulfur Silicon Relat. Elem. 1998, 139, 87–96.
- [14] D. Pastor, V. Huang, D. NabiRhani, Inorg. Chem. 1997, 36, 5966–5968.
- [15] D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem. 1999, 1715– 1725.
- [16] M. Draeger, Chem. Ber. 1975, 108, 1723-1730.
- [17] M. Draeger, Z. Anorg. Allg. Chem. 1976, 423, 53-66.
- [18] C. Deng Hai, C. Hung Cheh, U. Chuen Her, Inorg. Chim. Acta 1993, 208, 99–101.
- [19] B. Kersting, B. Krebs, Inorg. Chem. 1994, 33, 3886-3892.
- [20] J. E. Huheey, E. A. Keiter, R. L. Keiter, *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed., Harper Collins College Publishers, New York, NY, **1993**, A30.
- [21] Y. Liu, D. Ballweg, T. Müller, I. A. Guzei, R. W. Clark, R. West, J. Am. Chem. Soc. 2002, 124, 12174–12181.
- [22] S. D. Pastor, A. R. Smith, G. Rihs, Phosphorus Sulfur Silicon Relat. Elem. 1996, 115, 169–177.
- [23] K. Tani, S. Kato, T. Kanda, S. Inagaki, Org. Lett. 2001, 3, 655– 657.
- [24] A. K. Brisdon, I. R. Crossley, R. G. Pritchard, J. E. Warren, *Inorg. Chem.* 2002, 41, 4748–4755.
- [25] W. W Porterfield, Inorganic Chemistry: A Unified Approach, 2nd ed., Academic Press, San Diego, Cal, 1993, p. 214.
- [26] A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, *Inorg. Chem.* 1999, 38, 3369–3376.
- [27] N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.* 1998, 37, 3862–3867.
- [28] D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.* 1997, 36, 5082–5089.
- [29] L. Pauling, *The Nature of the Chemical Bond*, 3rd ed., Cornell University Press, Ithaca, NY, 1960, p. 239.

Eur. J. Inorg. Chem. 2006, 4752-4760

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.eurjic.org

- [30] U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics 1994, 13, 4413-4425.
- [31] Gauss View Version 2.06, Gaussian, Inc. Pittsburgh PA, USA. [32] J. J. P. Stewart, J. Comput. Chem. 1989, 10, 209-220; J. J. P. Ste-wart, J. Comput. Chem. 1989, 10, 221–264.
- [33] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
 [34] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol.
- Phys. 1993, 80, 1431-1441.
- [35] J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408–3420.
- [36] T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007-1023.
- [37] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
- [38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,

- R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
- [39] G. M. Sheldrick, SHEXTL 5.10, Bruker AXS, Inc. Madison. WI. USA, 1998.
- [40] SADABS: Area-Detector Absorption Correction Programme, Siemens Industrial Automation, Inc. Madison, WI, 1996.
- [41] CCDC-605842, -605843, -605840, -605841, -605844 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif Received: May 8, 2006

Published Online: October 10, 2006

DOI: 10.1002/ejic.200600227

Synthesis, Characterisation and Properties of As-Monohalogenated Dibenzoarsocines $S(C_6H_4S)_2AsHal$ (Hal = Cl, Br, I) – A Study of the Transannular Interaction $S \rightarrow As$

Simplicio González-Montiel,^[a] Noemí Andrade-López,^[a] and José G. Alvarado-Rodríguez*^[a]

Keywords: Arsenic complexes / Main group elements / Hypervalent compounds / Structure elucidation

Addition of AsCl₃ to $S(C_6H_4SH)_2$ in benzene solution leads to the formation of the stable compound $S(C_6H_4S)_2AsCl$ (1). The $S(C_6H_4S)_2AsHal$ [Hal = Br (2), I (3)] compounds have been synthesised by halogen exchange from 1 and the corresponding potassium halide. X-ray structure determinations of complexes 1–3 reveal that the arsenic atom acts as an acceptor atom exhibiting an intramolecular transannular interaction with the thioether-like sulfur atom. The geometry of the tetracoordinate As atom in the title compounds is described as distorted pseudo-trigonal-bipyramidal with a stereochemically active lone pair and 66–63 % trigonal-bipyramidal character. The transannular interaction influences the conformation of the dibenzotrithiarsocine system, adopting the central eight-membered ring with a boat–boat conformation and C_s symmetry.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

We have been interested in the coordination chemistry of dithio ligands that can increase the coordination number around an acidic Lewis atom A, where A is a heavy p-block element. Some of these ligands, in particular D(CH2- $CH_2S)_2^{2-}$ with the donor atom D = O, S and NR, are quite flexible and led to the atom A expanding its coordination number through an intramolecular transannular interaction D→A. In these metallocanes, the conformational diversity is very large.^[1] In addition, in these compounds the interaction is a stabilising factor in comparison with the cyclooctane ring and can be envisaged as a tool for controlling stabilities and conformations. The strength of this interaction spans over a wide range. In some cases it is very strong; for example in arsocanes the cross-ring bond has been claimed as being responsible for the stabilisation of discrete arsenium cations.^[2] On the other hand, the more constrained ligands of type I (Scheme 1) have been explored for several groups in the coordination chemistry of transitional metals as well as light p-block elements; in these type II complexes the transannular interaction can also take place.[3] In particular, we have studied some Sb-monohalogenated dibenzometallocines and we have shown by means of X-ray crystallographic and DFT studies the acidic behaviour of the antimony atom acting as a Lewis acceptor toward sulfur in the decreasing order I > Br > Cl. These

 [a] Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo,
 Km. 4,5 Carretera Pachuca-Tulancingo, Pachuca, Hidalgo C.P. 42076, México
 Fax: +52-771-717-2000 ext. 6502
 E-mail: galvarad@uaeh.reduaeh.mx

3762 InterScience

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

results prompt us to expand our studies to arsenic, a lighter group 15 element.

Scheme 1.

Here we report the synthesis and structural study of type II complexes with arsenic(III) as the acceptor atom. These compounds are good models for further understanding of the nature of the S \rightarrow As interaction. After the description of the synthesis of dibenzoarsocines, IR and Raman spectra, mass spectra, NMR and X-ray crystallographic data are presented and discussed.

Results and Discussion

Synthesis of S(C6H4S)2AsHal (Hal = Cl, Br, I)

The ligand $S(C_6H_4SH)_2$ was prepared according to a reported method.^[4] Treatment of $S(C_6H_4SH)_2$ with AsCl₃ in benzene yielded $S(C_6H_4S)_2AsCl$ (1) as colourless crystals (see Scheme 2). $S(C_6H_4S)_2AsBr$ (2) and $S(C_6H_4S)_2AsI$ (3) were obtained from a halogen-exchange reaction as reported for antimony complexes^[3] between 1 and an excess of KBr/HBr or K1 in hot benzene, respectively, yielding colourless crystals for 2 and pale yellow crystals for 3 (see

Eur. J. Inorg. Chem. 2006, 3762-3768

Experimental Section for details). All complexes are airstable, soluble in benzene and chloroform, and insoluble in pentane, hexane and 2-propanol.

Scheme 2.

Besides the expected benzene group bands, there are several bands below 400 cm⁻¹. In the 400–300 cm⁻¹ region we found two very intense bands assignable to the asymmetric and symmetric stretching vibration modes of the S–As–S group. In order to confirm the assignment of these bands, we compared these data with those exhibited by the antimony analogue complexes previously reported (see Scheme 3). The data are listed in Table 1. In the case of the arsenic complexes, the $v_{asym} - v_{sym}$ difference (Δ) is 59 ± 3 cm⁻¹, whereas in antimony complexes with sulfur as the donor atom, Δ is 46 ± 4 cm⁻¹.

Vibrational Spectra

The Raman spectrum of each compound in the solid state was obtained for light scattered from the 1579.8 nm line of an argon ion laser. Under these conditions, compounds 1 and 2 experienced photodecomposition by the laser. The IR spectrum of each solid compound pressed on a CsI disk was collected in the 4000–200 cm⁻¹ range. The Raman spectrum of the iodo complex is shown in Figure 1.

Scheme 3.

In the IR spectra of complexes 1 and 2 we assigned the 392 and 280 cm⁻¹ bands to the As–Cl and As–Br stretching bands, respectively.^[5] In order to establish the presence of the As–I group frequency band, we used the Varshni ap-

Eur. J. Inorg. Chem. 2006, 3762-3768

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.eurjic.org

Table 1. Stretching vibration frequencies of the S–A–S group $[cm^{-1}]$ of $D(C_6H_4S)_2AHal$.

D	A-Hal ^[a]	Spectroscopy	Vasym	$v_{\rm sym}$	$\Delta (v_{\rm asym} - v_{\rm sym})$
S	As-Cl	1R	380	326	54
		Raman	[b]	[b]	-
S	Sb-Cl	IR	371	330	41
		Raman	370	328	42
S	As-Br	IR	387	325	62
		Raman	[b]	[b]	-
S	Sb-Br	IR	371	327	44
		Raman	373	322	51
S	As-1	IR	380	320	60
		Raman	380	321	59
S	Sb-I	IR	372	325	47
		Raman	372	323	49
0	Sb-Cl	IR	369	316	53
		Raman	370	311	59

[a] For the data of antimony complexes see ref.^[3] [b] Not measured.

proach reported for a series of metallocanes containing As, Sb and Bi linked to halide ligands, in conjunction with the As–I bond length found in complex 3.^[6] By using this treatment, we calculated the stretching frequency at 172 cm⁻¹. However, we did not observe any significant band at this frequency. Therefore the intense band at 205 cm⁻¹ has been assigned to the As–I stretching frequency.^[5] In this sense, Draeger et al. stated that the most intense bands in their series studied belong to the iodo complexes.^[6] The vibrational data analysis has shown the usual tendency that the higher the mass of the halogen ligand, the lesser the frequency of the stretching As–Hal group band.

Mass Spectra

The EI mass spectra were obtained at 70 eV. In 1 and 2 the molecular ion was observed as a low-intensity peak with the appropriate isotopic ratio; for 3 the molecular ion was not observed. In all cases the intense ion fragment in m/z =323 is assigned to the loss of the halogen atom in the compounds, yielding an S(C₆H₄S)₂As tricyclic moiety, confirming the binding of arsenic to sulfur atoms and the stability of the dibenzotrithiarsocine system. In all the spectra there are peaks corresponding to the S(C₆H₄S)₂, S(C₆H₄)S and S(C₆H₄)₂ fragments. No more peaks could be assigned.

NMR Spectroscopy

The NMR spectra of the three complexes were recorded in CDCl₃ solution at room temperature and the chemical shifts are relative to TMS. The assignments of these complexes were made by two-dimensional heteronuclear and homonuclear correlation experiments (coloc and hetcor).

¹H NMR spectra of complexes 1–3 each displayed four signals in an ABCD pattern (see Table 2, Scheme 4). In these spectra the disappearance of the signal of the SH proton at $\delta = 4.10$ ppm indicated that the arsenic complexes were formed. In solution the two S(C₆H₄SAs) halves are

equivalent. In all complexes the signals of the protons 2-H, 3-H and 4-H are shifted towards high frequencies with respect to those of the free neutral ligand.^[4]

Table 2. 'H NMR chemical shift (δ values [ppm]) for 1-3.

	Hal	1-H	2-H	3-H	4-H
1	Cl	7.53	7.29	7.21	7.56
2	Br	7.53	7.29	7.21	7.54
3	1	7.48	7.28	7.21	7.52

Scheme 4.

The ¹³C NMR spectra of complexes 1–3 in CDCl₃ each show an important paramagnetic effect from the arsenic atom to the *ipso* carbon atom C-1a, causing chemical shift variations in the order of 8.6, 7.9 and 7.3 ppm at higher frequencies with respect to the free neutral ligand.^[4] Similar shifts have been reported in dibenzostibocine analogues.^[3] Another interesting feature was the observation of a small deshielding of the C-1a atom due to the increment of the electronegativity of the halogen ligand (see Table 3, Scheme 5).

Table 3. 13C NMR chemical shift (δ values [ppm]) for 1-3.

	Hal	C-1	C-1a	C-2	C-3	C-4	C-4a
1	CI	134.7	143.6	130.0	127.7	130.9	131.7
2	Br	134.9	142.9	130.0	127.6	130.7	131.6
3	I	135.3	141.6	129.9	127.7	130.7	131.9

- Scheme 5.

X-ray Structures of Compounds 1-3

The structures in the crystalline solid state of all complexes were definitely determined by single-crystal X-ray diffraction analyses. The molecular structure drawings are depicted in Figure 2 and selected bond lengths, angles and torsion angles are given in Table 4. Compounds 1 and 3 crystallise with mirror symmetry in space groups $Pmn2_1$ and Pnma, respectively; the two S(C₆H₄SAs) halves are related by a mirror plane containing the S2–As–Hal plane.

Figure 2. ORTEP diagrams of $S(C_6H_4S)_2AsCl$ (1), $S(C_6H_4S)_2AsBr$ (2) and $S(C_6H_4S)_2AsI$ (3) (50% probability ellipsoids).

In all complexes 1, 2 and 3 the As–S distances are in good agreement with the covalent radii sum $[\Sigma r_{cov}(As,S) = 2.22 \text{ Å}]^{[7]}$ and with those reported in other heterocycles with arsenic–sulfur bonds.^[8–19] The As–Hal distances (Hal = Cl, Br, I) are 5–7% longer than the corresponding covalent radii sum $[(\Sigma r_{cov}(As,Cl) = 2.19 \text{ Å}; \Sigma r_{cov}(As,Br) = 2.34 \text{ Å}; \Sigma r_{cov}(As,I) = 2.53 \text{ Å}]^{15]}$ and are similar to other distances in several heterocycles containing As–Hal bonds.^[1,2,8,9,11,16,20,21] The angles around the arsenic atom can be divided in two sets. The larger angles are the endocyclic S–As–S ones, the largest found in the iodo complex [102.84(11), 103.22(9) and 104.30(7)° in 1, 2 and 3, respectively]. On the other hand, the angles involving the halogen atom are on average substantially smaller [87.00(8), 87.71(6) and 87.70(3)° in 1, 2 and 3, respectively]. At first glance,

Table 4. Selected bond lengths [Å], angles and torsion angles [°] of $S(C_6H_4S)_2AsHal$.

	1	2	3
Hal	Cl	Br	I
S2→As	2.705(3)	2.698(2)	2.740(1)
As-S1	2.268(2)	2.291(2)	2.283(1)
As-S3	-	2.268(3)	
As-Hal	2.296(2)	2.482(1)	2.692(1)
S2-C6	1.789(6)	1.801(8)	1.786(4)
S2-C7	-	1.794(7)	-
S2→As-Hal	166.4(1)	168.36(6)	166.96(3)
S1-As-Hal	87.00(8)	87.30(6)	87.70(3)
S3-As-Hal	-	88.12(6)	-
S1-As-S2	84.55(6)	84.84(7)	84.31(3)
S1-As-S1A	102.8(1)	-	104.30(7)
S1-As-S3	-	103.22(9)	-
C6-S2-C6a	102.7(4)	-	103.0(2)
C6-S2-C7	-	101.8(3)	-
C1-C6-S2-C6A	-104.3(5)	-	-104.7(3)
C1-S1-As-S1A	85.8(2)	-	-84.7(1)
C1-C6-S2-C7	-	100.1(6)	—
C12-C7-S2-C6	-	-102.9(7)	-
C1-S1-As-S3	-	-83.9(3)	_
C12-S3-As-S1	_	83.4(3)	_

the local geometry of the tricoordinate arsenic atom could be described as pyramidal.

In addition to the covalent bonds of the arsenic atom, a transannular interaction S2→As1 within the eight-membered rings was observed (see Figure 2). The S2→As1 bond lengths in 1, 2 and 3 are 2.705(3), 2.698(2) and 2.740(1) Å, respectively, which are 22, 21 and 24% longer than the covalent radii sum of As and S but significantly shorter than the van der Waals radii sum $[\Sigma r_{vdW}(As,S) = 3.65 \text{ Å}],^{[7]}$ prompting us to propose the existence of a secondary bonding.[22] These S2-As1 distances in 1, 2 and 3 are significantly longer than those reported for the two crystallographic different cations in [S(CH2CH2S)2As][GaCl4]^[2] [2.347(10) and 2.391(9) Å] and are similar to those reported for S(CH2CH2S)2AsCl^[9] [2.719(3) Å], S(CH2CH2S)2AsBr^[1] [AsI₃{MeS(CH₂)₂SMe}]^[20] [2.697(2) Å] for neutral tetraand hexacoordinate arsenic complexes, but significantly shorter than those reported for [AsCl₃(14)aneS₄]^[20] [2.8709(9) and 2.9655(9) Å] [AsBr₃{MeS(CH₂)₂SMe}]^[20] [AsI3{MeS(CH2)2SMe}][20] , [2.876(3) Å], [2.792(2) Å], [S(CH₂CH₂S)₂AsS₂CN(CH₂CH)₂]^[1] [3.170(2) and S(CH₂CH₂S)₂AsS₂CNEt₂^[12] 3.113(2) Å], [3.172(2) Å], S(CH2CH2S)2AsS2PPh2[10] [2.881(4) Å], S(CH2CH2S)2As-S₂P(OMe)₂^[11] [2.911(1) Å] and S(CH2CH2S)2As-S₂P[OCH(Me)]₂CH₂^[1] [2.942(11) Å]. In the title compounds it can be clearly seen that the transannular interaction (S2 \rightarrow As1) decreases in the order Br > Cl > I with the shortest distance in the bromo compound. A similar phenomenon has been observed in the arsocanes.[1]

If the transannular interaction $S \rightarrow As$ is taken into account, the geometry of the coordination sphere of the arsenic atom can be described as pseudo-trigonal-bipyramidal, where the halogen and thioether-like sulfur atoms are in

S. González-Montiel, N. Andrade-López, J.G. Alvarado-Rodríguez

Table 5. Comparison of S→As-Hal geometrical bond parame	ers, bond lengths [Å], bond angles	[°], and % TBP and BO in 1-3 complexes.
---	------------------------------------	---

	Hal	S→As	S→As–Hal	% TBP	$\Delta d^{[n]}$	BO ^[b] S→As
1	CI	2.705(3)	166.4(1)	66.1	0.485	0.207
2	Br	2.698(2)	168.36(6)	66.6	0.478	0.212
3	1	2.740(1)	166.96(3)	63.7	0.520	0.185

[a] Bond widening, $\Delta d = (d_{exp} - \Sigma r_{cov})$ according to standard bond lengths $d(As,S) = 2.22 \text{ Å}.^{[7]}$ [b] Mode of calculation BO = $10^{-(1.41 \cdot \Delta d)}$ [26-28]

Figure 3. View of the As…S intermolecular interactions in the crystal structure of 1.

axial positions; meanwhile the equatorial positions are occupied by the two thiolate-like sulfur atoms and the stereochemically active lone pair of the arsenic(III) atom.

The influence of the S \rightarrow As interaction on the local geometry of the arsenic atom from pyramidal to trigonal-bipyramidal (TBP) can be evaluated. In this regard, we used the method of Holmes based upon donor-acceptor atom bond length.^[23-25] Likewise, in order to establish the magnitude of the interaction, we calculated the Pauling-type bond order (BO) for all compounds.^[26-28] The results are presented in Table 5. The displacement at geometry and bond order are related to bond lengths.

The percentages of TBP in the title compounds are slightly smaller than those reported for the antimony analogues, in spite of the smaller angles $S \rightarrow As$ -Hal to the ideal linear *trans* angle in comparison with the same $S \rightarrow Sb$ -Hal data. With regard to the BO, these values are relatively smaller than those observed for the trithiarsocanes $S(CH_2CH_2S)_2AsHal$ (Hal = Cl, Br, I) despite the apparent rigidity of the dibenzoarsocine system, and are also smaller than those calculated for the $S(C_6H_4S)_2SbHal$ analogues (0.308, 0.287 and 0.274 for Hal = I, Br and Cl, respectively).

The transannular interaction also influences the eightmembered ring conformation, which can be described as boat-boat (C_s symmetry).^[29] This conformation was also found in the iodo-antimony analogue with the shortest transannular interaction for that series and the arsenium cation [S(CH₂CH₂S)₂As]⁺, which displays the largest BO in the series of arsocanes.

In the crystal the packing is mainly due to As. S intermolecular weak interactions, as is shown in Figure 3 for the chloro compound. These As. S distances are 3.602(2), 3.595(3)-3.662(3) and 3.711(2) Å for 1, 2 and 3, respectively; the increase in these distances can be ascribed to the increasing halogen atom sizes.

Conclusions

In order to gain a better insight into the nature of the D \rightarrow A interactions and their relation to the geometrical features in the dibenzometallocine systems containing heavier p-block elements, S(C₆H₄S)₂AsHal compounds 1–3 have been synthesised and structurally fully characterised. All

compounds exhibit a pseudo-bipyramidal-trigonal local geometry of the arsenic atom with intramolecular weak As···S interactions in the crystal structure.

The title compounds exhibit a relatively strong S \rightarrow As transannular interaction, where the distances are 21–23% longer than the covalent radii sum. All compounds have shown relatively high TBP displacement values, with Pauling-type bond orders similar to the more flexible arsocane systems. However, these BO values are smaller than those calculated for the antimony analogues, suggesting a much poorer Lewis acidity of As^{III} in comparison to the heavier antimony atom.

Experimental Section

General Methods: Unless noted otherwise, all reactions and operations were carried out under argon at room temperature with use of standard Schlenk techniques. Solvents were dried and distilled before use. Melting points were determined with a Melt-Temp II instrument and are uncorrected. Spectra were recorded with the following instruments. Mass spectra: EI, 70 eV, Hewlett Packard MS-598 mass spectrometer. Elemental analysis: Perkin-Elmer Series II CHNS/O Analyzer. IR spectra: 4000-400 cm-1 range, Perkin-Elmer System 2000 FTIR spectrometer, as KBr pellets and 400-200 cm⁻¹ range, Bruker Tensor 27 spectrometer, as CsI pellets. Raman spectra: In the solid state, 4000-100 cm-1 range, Perkin-Elmer Spectrum GX NIR FT-RAMAN spectrometer with 10-280 mW laser power and 4 cm⁻¹ resolution. NMR: Jeol Eclipse 400 spectrometer, residual protio-solvent signal used as reference for ¹H NMR spectra; ¹³C{¹H} NMR spectra referenced through the solvent peaks; chemical shifts quoted on the δ scale (downfield shifts positive) relative to tetramethylsilane (1H, 13C(1H)); spectra recorded at 25 °C; 1H, 399.78 MHz; 13C{1H}, 100.53 MHz. AsCl3, KBr, HBr and KI were obtained commercially and used as received. S(C6H4SH)2 was prepared as reported.[4]

 $S(C_6H_4S)_2AsCl (1)$: AsCl₃ (1.38 g, 7.55 mmol) was added to a solution containing $S(C_6H_6SH)_2$ (1.76 g, 7.59 mmol) in benzene

Table 6. Crystallographic data for compounds 1-3.

(25 mL). The yellow solution was stirred for 30 min, during which the colour changed to green, and then was refluxed for 24 h. The solution was cooled to room temperature and dried by means of a column of Celite and Na2SO4. Slow concentration of the benzene solution afforded colourless crystals of 1, which were washed with hexanes (40 mL) and filtered by suction. Yield: 2.18 g (80%). M.p. 124-126 °C. MS (EI): m/z (%) = 358 (30) [M⁺⁺], 323 (70) [M⁺⁺ Cl], 248 (10) $[S(C_6H_4S)_2^{+}]$, 216 (100, base peak) $[S(C_6H_4S)^{+}]$. C12H8AsClS1 (358.76): calcd. C 40.17, H 2.25; found C 40.29, H 2.28. ¹H NMR (CDCl₃): δ = 7.21 (ddd, ³J_{3-H,2-H} = ³J_{3-H,4-H} = 7.68 Hz, ${}^{4}J_{3-H,1-H} = 1.48$ Hz, 2 H, 3-H), 7.29 (ddd, ${}^{3}J_{2-H,1-H} =$ ${}^{3}J_{2-H,3-H} = 7.68$ Hz, ${}^{4}J_{2-H,4-H} = 1.48$ Hz, 2 H, 2-H), 7.53 (dd, ${}^{3}J_{1-H,2-H} = 7.68$ Hz, ${}^{4}J_{1-H,3-H} = 1.48$ Hz, 2 H, 1-H), 7.56 (dd, ${}^{3}J_{4-H,3-H} = 7.68 \text{ Hz}, {}^{4}J_{4-H,2-H} = 1.48 \text{ Hz}, 2 \text{ H}, 4-\text{H}) \text{ ppm. } {}^{13}\text{C} \{{}^{1}\text{H}\}$ NMR (CDCl₃): $\delta = 127.7, 130.0, 130.9, 131.7, 134.7, 143.6 ppm.$ IR (KBr): $\bar{v} = 3049$, 1567, 1447, 1417, 1255, 1032, 732 cm⁻¹.

S(C6H4S)2AsBr (2): S(C6H4S)2AsCl (1, 200 mg, 0.56 mmol), KBr (400 mg, 3.32 mmol) and HBr (48%, 4 mL) were suspended in benzene (25 mL) and the mixture was refluxed for 24 h. The water was removed from the resulting colourless solution by means of a Dean-Stark trap. The yellow solution obtained was dried by means of a column of Celite and Na2SO4. Slow concentration of the benzene solution afforded colourless crystals of 2, which were washed with hexanes (40 mL) and filtered by suction. Yield: 160 mg (71%). M.p. 138-140 °C. MS (EI): m/z (%) = 402 (7) [M⁻⁺], 323 (100, base peak) [M⁺⁺ - Br], 248 (20) [S(C₆H₄S)₂⁻⁺], 215 (30) [S(C₆H₄S)⁺⁺ - 1], 184. C12H8AsBrS3 (403.22): calcd. C 35.74, H 2.00; found C 36.14, H 2.06. ¹H NMR (CDCl₃): $\delta = 7.21$ (ddd, ${}^{3}J_{3-H,2-H} = {}^{3}J_{3-H,4-H} =$ 7.50 Hz, ${}^{4}J_{3-H,1-H} = 1.48$ Hz, 2 H, 3-H), 7.29 (ddd, ${}^{3}J_{2-H,1-H} =$ ${}^{3}J_{2-H,3-H} = 7.50$ Hz, ${}^{4}J_{2-H,4-H} = 1.48$ Hz, 2 H, 2-H), 7.53 (dd, ${}^{3}J_{1-H,2-H} = 7.50$ Hz, ${}^{4}J_{1-H,3-H} = 1.48$ Hz, 2 H, 1-H), 7.54 (dd, ${}^{3}J_{4-H,3-H} = 7.50 \text{ Hz}, {}^{4}J_{4-H,2-H} = 1.48 \text{ Hz}, 2 \text{ H}, 4-\text{H}) \text{ ppm. }{}^{13}\text{C}{}^{1}\text{H}$ NMR (CDCl₃): δ = 127.6, 130.0, 130.7, 131.6, 134.9, 142.9 ppm. IR (KBr): $\bar{v} = 3042, 1551, 1444, 1415, 1252, 1033, 741 \text{ cm}^{-1}$

 $S(C_6H_4S)_2AsI$ (3): $S(C_6H_4S)_2AsCI$ (1, 200 mg, 0.56 mmol) and KI (550 mg, 3.32 mmol) were suspended in benzene (25 mL) and the mixture was refluxed for 24 h. The yellow solution obtained was dried by means of a column of Celite and Na₂SO₄. Slow concentration of the benzene solution afforded pale yellow crystals of 3,

Compound	1	2	3
Empirical formula	C12H8AsClS3	C12H8AsBrS3	C12H8AsIS3
M, [g/mol]	358.73	403.19	450.18
Crystal size [mm]	$0.60 \times 0.09 \times 0.09$	$0.50 \times 0.05 \times 0.04$	$0.17 \times 0.13 \times 0.07$
Crystal system	orthorhombic	monoclinic	orthorhombic
Space group	Pmn2 ₁	$P2_1/c$	Pnma
ρ_{calcd} [Mg/m ³]	1.778	-1.987	2.135
Z	2	4	4
a [Å]	17.306(5)	4.5694(10)	19.062(2)
b [Å]	8.533(2)	17.148(4)	15.8609(17)
c [Å]	4.5381(12)	17.218(4)	4.6332(5)
BIST	90	92.167(6)	90
VIAI	670.1(3)	1348.1(5)	1400.8(3)
$\mu [mm^{-1}]$	3.175	5.922	5.051
F(000)	356	784	856
Gof	0.891	0.879	1.041
Absorption correction	SADABS	SADABS	SADABS
Reflections collected	4346	8046	16873
Unique reflections, Rint	1310, 0.0752	2362, 0.0642	1570, 0.0509
$R_1, wR_2 [I > 2\sigma(I)]$	0.0470, 0.0854	0.0382, 0.0863	0.0347, 0.0868
R_1 , wR_2 (all data)	0.0734, 0.0914	0.0875, 0.1236	0.0518, 0.0929
Large residuals [e/Å3]	0.696/-0.345	0.538/-0.527	0.466/-0.598

Eur. J. Inorg. Chem. 2006, 3762-3768

© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.eurjic.org
FULL PAPER

which were washed with hexanes (40 mL) and filtered by suction. Yield: 250 mg (80%). M.p. 153–156 °C. MS (EI) *m/z* (%) = 323 (100, base peak) [M⁺⁺ - I], 248 (33) [S(C₆H₄S)₂⁺], 215 (40) [S(C₆H₄S)₂⁺ - 1]. C₁₂H₈AsIS₃ (450.22): calcd. C 32.01, H 1.79; found C 31.29, H 1.86. ¹H NMR (CDCl₃): δ = 7.21 (ddd, ${}^{3}J_{3-H,2-H} = {}^{3}J_{3-H,4-H} = 7.48$ Hz, ${}^{4}J_{3-H,1-H} = 1.46$ Hz, 2 H, 3-H), 7.28 (ddd, ${}^{3}J_{2-H,1-H} = {}^{3}J_{2-H,3-H} = 7.48$ Hz, ${}^{4}J_{2-H,4-H} = 1.46$ Hz, 2 H, 2-H), 7.48 (dd, ${}^{3}J_{1-H,2-H} = 7.48$ Hz, ${}^{4}J_{4-H,2-H} = 1.46$ Hz, 2 H, 2-H), 7.52 (dd, ${}^{3}J_{4-H,3-H} = 7.48$ Hz, ${}^{4}J_{4-H,2-H} = 1.46$ Hz, 2 H, 4-H) ppm. ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ = 127.7, 129.9, 130.7, 131.9, 135.3, 141.6 ppm IR (KBr): \tilde{v} = 3044, 1550, 1445, 1414, 1251, 1032, 751 cm⁻¹.

X-ray Crystallography: Suitable single crystals of all complexes were grown by slow concentration of benzene solutions. X-ray diffraction data on 1-3 were collected at room temperature with a CCD Smart 6000 diffractometer through the use of Mo-Ka radiation ($\lambda = 0.71073$ Å, graphite monochromator). The data were integrated, scaled, sorted and averaged using the SMART software package. The structures were solved by direct methods, using SHELXTL NT Version 5.10 and refined by full-matrix least squares against F2.130] An empirical absorption correction based on the multiple measurement of equivalent reflections was applied by using the program SADABS.[31] The displacement parameters of non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were kept fixed with a common isotropic displacement parameter. Selected crystallographic data are given in Table 6. CCDC-600909 (1), -600910 (2) and -600911 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

J. G. A. R. fully acknowledges the financial support of the CONACyT (Project 44009) for these investigations and S. G. M. fully acknowledges a scholarship for supporting his studies. We wish to thank Dra. Verónica García Montalvo (UNAM) for the recording the IR and EI mass spectra and Mrs. Yolanda Marmolejo (UAEH) for the Raman spectra.

- For a review of metallocanes, see: R. Cea-Olivares, V. García Montalvo, M. M. Moya-Cabrera, *Coord. Chem. Rev.* 2005, 249, 859–872.
- [2] N. Burford, T. M. Parks, P. K. Bakshi, T. S. Cameron, Angew. Chem. Int. Ed. Engl. 1994, 33, 1267–1268.
- [3] For a brief review of several complexes, see: J. G. Alvarado-Rodríguez, N. Andrade-López, S. González Montiel, G. Merino, A. Vela, *Eur. J. Inorg. Chem.* 2003, 3554–3562.
- [4] D. Sellmann, D. Haussinger, Eur. J. Inorg. Chem. 1999, 1715– 1725.

S. González-Montiel, N. Andrade-López, J.G. Alvarado-Rodríguez

- [5] G. Sócrates, Infrared and Raman Characteristic Group Frequencies – Tables and Charts, 3rd ed., John Wiley and Sons, New York, USA, 2001, p. 304.
 [6] A. Zickgraf, E. Braeu, M. Draeger, Spectrochim. Acta 1998,
- [6] A. Zickgraf, E. Braeu, M. Draeger, Spectrochim. Acta 1998, 54A, 85–90.
- [7] W. W. Porterfield, Inorganic Chemistry: A Unified Approach, 2nd ed., Academic Press, Inc., San Diego, California, 1993, p. 214.
- [8] M. Draeger, Z. Anorg. Allg. Chem. 1975, 411, 79-89.
- [9] M. Draeger, Chem. Ber. 1974, 107, 2601-2611.
- [10] M. A. Muñoz-Hernández, R. Cea-Olivares, G. Espinosa-Pérez, S. Hernández-Ortega, J. Chem. Soc., Dalton Trans. 1996, 4135– 4141.
- [11] M.-A. Muñoz-Hernández, R. Cea-Olivares, S. Hernández-Ortega, Inorg. Chim. Acta 1996, 253, 31–37.
- [12] R. Cea-Olivares, M. R. Estrada, G. Espinosa-Pérez, I. Haiduc, P. García y García, M. López-Cardoso, M. López-Vaca, *Main Group Chem.* 1995, 159–164.
- [13] N. Burford, T. M. Parks, B. W. Royan, B. Borecka, T. S. Cameron, J. F. Richardson, E. J. Gabe, R. Hynes, J. Am. Chem. Soc. 1992, 114, 8147–8153.
- [14] A. W. Cordes, P. D. Gwinup, M. C. Malmstrom, Inorg. Chem. 1972, 11, 836–838.
- [15] A. J. Di Maio, A. L. Rheingold, Inorg. Chem. 1990, 29, 798– 804.
- [16] R. Cea-Olivares, R. A. Toscano, M. López, P. García y García, *Heteroat. Chem.* 1993, 4, 313–317.
- [17] O. M. Kekia, A. L. Rheingold, Organometallics 1998, 17, 726– 730.
- [18] A. T. Mohammed, V. Krug, U. Muller, Z. Anorg. Allg. Chem. 1988, 557, 91–97.
- [19] J. M. Kisenyi, G. R. Willey, M. G. B. Drew, S. O. Wandiga, J. Chem. Soc. Dalton Trans. 1985, 69–74.
- [20] N. J. Hill, W. Levason, G. Reid, Inorg. Chem. 2002, 41, 2070– 2076.
- [21] A. J. Barton, N. J. Hill, W. Levason, G. Reid, J. Am. Chem. Soc. 2001, 123, 11801–11802.
- [22] N. W. Alcock, Adv. Inorg. Chem. Radiochem. 1972, 15, 1–50.
 [23] A. Chandrasekaran, P. Sood, R. O. Day, R. R. Holmes, Inorg. Chem. 1999, 38, 3369–3376.
- [24] N. V. Timosheva, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.* 1998, 37, 3862–3867.
- [25] D. J. Sherlock, A. Chandrasekaran, R. O. Day, R. R. Holmes, *Inorg. Chem.* 1997, 36, 5082–5089.
- [26] L. Pauling, *The Nature of the Chemical Bond*, 3rd ed., Cornell University Press, Ithaca, NY, **1960**, p. 239.
- [27] U. Kolb, M. Beuter, M. Gerner, M. Draeger, Organometallics 1994, 13, 4413–4425.
- [28] D. Britton, J. D. Dunitz, J. Am. Chem. Soc. 1981, 103, 2971– 2979.
- [29] T. Thompson, S. D. Pastor, G. Rihs, Inorg. Chem. 1999, 38, 4163–4467.
- [30] SHEXTL 5.10, Bruker AXS, Inc., Madison, WI, USA, 1998.
 [31] SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc., Madison, WI, 1996.

Received: March 13, 2006 Published Online: August 1, 2006